MicroBlaze
Processor
Reference Guide

Embedded Development Kit
EDK 13.4

UG081 (v13.4)

& XILINX.

& XILINX.

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied.

Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You
are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to
change without notice.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR
ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx.

© 2012 Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zyng, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision

10/01/02 1.0 Xilinx EDK 3.1 release

03/11/03 2.0 Xilinx EDK 3.2 release

09/24/03 3.0 Xilinx EDK 6.1 release

02/20/04 3.1 Xilinx EDK 6.2 release

08/24/04 4.0 Xilinx EDK 6.3 release

09/21/04 4.1 Minor corrections for EDK 6.3 SP1 release

11/18/04 4.2 Minor corrections for EDK 6.3 SP2 release

01/20/05 5.0 Xilinx EDK 7.1 release

04/02/05 51 Minor corrections for EDK 7.1 SP1 release

05/09/05 5.2 Minor corrections for EDK 7.1 SP2 release

10/05/05 53 Minor corrections for EDK 8.1 release

02/21/06 5.4 Corrections for EDK 8.1 SP2 release

06/01/06 6.0 Xilinx EDK 8.2 release

07/24/06 6.1 Minor corrections for EDK 8.2 SP1 release

08/21/06 6.2 Minor corrections for EDK 8.2 SP2 release

08/29/06 6.3 Minor corrections for EDK 8.2 SP2 release

09/15/06 7.0 Xilinx EDK 9.1 release

02/22/07 7.1 Minor corrections for EDK 9.1 SP1 release

03/27/07 7.2 Minor corrections for EDK 9.1 SP2 release
MicroBlaze Processor Reference Guide www.xilinx.com uGO081 (v13.4)

http://www.xilinx.com

Date Version Revision
06/25/07 8.0 Xilinx EDK 9.2 release
10/12/07 8.1 Minor corrections for EDK 9.2 SP2 release
01/17/08 9.0 Xilinx EDK 10.1 release
03/04/08 9.1 Minor corrections for EDK 10.1 SP1 release
05/14/08 9.2 Minor corrections for EDK 10.1 SP2 release
07/14/08 9.3 Minor corrections for EDK 10.1 SP3 release
02/04/09 10.0 Xilinx EDK 11.1 release
04/15/09 10.1 Xilinx EDK 11.2 release
05/28/09 10.2 Xilinx EDK 11.3 release
10/26/09 10.3 Xilinx EDK 11.4 release
04/19/10 11.0 Xilinx EDK 12.1 release
07/23/10 11.1 Xilinx EDK 12.2 release
09/21/10 11.2 Xilinx EDK 12.3 release
11/15/10 11.3 Minor corrections for EDK 12.4 release
11/15/10 11.4 Xilinx EDK 12.4 release
03/01/11 12.0 Xilinx EDK 13.1 release
06/22/11 13.2 Xilinx EDK 13.2 release
10/19/11 13.3 Xilinx EDK 13.3 release
01/18/12 13.4 Xilinx EDK 13.4 release

UGO081 (v13.4)

www.xilinx.com

MicroBlaze Processor Reference Guide

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com uGO081 (v13.4)

http://www.xilinx.com

& XILINX.

Table of Contents

ReVISION HiStOry o 2
Chapter 1: Introduction
GUIdE CONTENTS ...t e e 7
CONVENTIONS ... 7
Chapter 2. MicroBlaze Architecture
OV VI W . . .t 9
Data Types and ENdianness . ..ot 13
INSErUCTIONS. . ..o o 14
ReGISTErS .o 25
Pipeline Architecture 50
Memory Architecture. 52
Privileged InStructions. i 53
Virtual-Memory Management. ... 54
Reset, Interrupts, Exceptions,and Break............................... 64
Instruction Cache 71
Data Cache 73
Floating Point Unit (FPU). 77
Stream Link Interfaces o 81
Debugand Trace.ot 82
Fault Tolerance 83
Lockstep Operationt 89
Chapter 3: MicroBlaze Signal Interface Description
OV BV W et 93
MicroBlaze /O OVeIVIEWo 94
AXI14 Interface DesCriptiont 104
Processor Local Bus (PLB) Interface Description 107
Local Memory Bus (LMB) Interface Description........................ 107
Fast Simplex Link (FSL) Interface Description 114
Xilinx CacheLink (XCL) Interface Description 116
Lockstep Interface Description.................. i 122
Debug Interface Descriptiono 128
Trace Interface Description.............. i i i 128
MicroBlaze Core Configurability o it 131
MicroBlaze Processor Reference Guide www.xilinx.com

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Chapter 4. MicroBlaze Application Binary Interface

Data TYPES . .ot 143
Register Usage ConVENTIONS. e 144
Stack ConveNtion 145
Memory Model 147
Interrupt and Exception Handling.............. i 148

Chapter 5: MicroBlaze Instruction Set Architecture

NO At ON . . oo 149
FOrmats . .. e 151
INStrUCHIONS. . . . ot e 151

Appendix A: Additional Resources

EDK DOCUMENTAtioN 249
Additional ReSOUICESot 249
MicroBlaze Processor Reference Guide www.xilinx.com

UG081 (v13.4)

http://www.xilinx.com

& XILINX.
Chapter 1

Introduction

The MicroBlaze™ Processor Reference Guide provides information about the 32-bit soft processor,
MicroBlaze, which is part of the Embedded Processor Development Kit (EDK). The document is
intended as a guide to the MicroBlaze hardware architecture.

Guide Contents

This guide contains the following chapters:

e Chapter 2, “MicroBlaze Architecture,” contains an overview of MicroBlaze features as well as
information on Big-Endian and Little-Endian bit-reversed format, 32-bit general purpose
registers, cache software support, and Fast Simplex Link interfaces.

e Chapter 3, “MicroBlaze Signal Interface Description,” describes the types of signal interfaces
that can be used to connect MicroBlaze.

e Chapter 4, “MicroBlaze Application Binary Interface,” describes the Application Binary
Interface important for developing software in assembly language for the soft processor.

e Chapter 5, “MicroBlaze Instruction Set Architecture,” provides notation, formats, and
instructions for the Instruction Set Architecture of MicroBlaze.

e Appendix A, “Additional Resources,” provides links to EDK documentation and additional
resources.

Conventions

This document uses the following conventions. An example illustrates each convention.

Typographical

The following typographical conventions are used in this document:

Convention Meaning or Use Example

Messages, prompts, and program

Courier font files that the system displays.

speed grade: - 100

Literal commands that you enter in

Courier bold a syntactical statement.

ngdbui | d design_name

Commands that you select from a File - Open

Helvetica bold menu.
Keyboard shortcuts Ctrl+C
MicroBlaze Processor Reference Guide www.xilinx.com 7

UG081 (v13.4)

http://www.xilinx.com

Chapter 1: Introduction

& XILINX.

Convention

Meaning or Use

Example

Italic font

Variables in a syntax statement for
which you must supply values.

ngdbui | d design_name

References to other manuals.

See the Development System
Reference Guide for more
information.

Emphasis in text.

If awire is drawn so that it overlaps
the pin of a symbol, the two nets are
not connected.

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7: 0] , they are
required.

ngdbui I d [opti on_nane]
desi gn_nane

A list of items from which you must

Vertical ellipsis

Braces { } choose one or more. lowpwr ={on| of f}
Vertical bar | Separates items in a list of choices. | owpwr ={on| of f}
Repetitive material that has been I OB #1: Nanme = QOUT’

omitted

| OB #2: Name = CLKIN

Horizontal ellipsis . . .

Repetitive material that has been

al | ow bl ock block_name locl

omitted loc2 ... locn;
Online Document
The following conventions are used in this document:
Convention Meaning or Use Example
Cross-reference link to a location in | See the section “Additional
the current document Resources” for details.
Blue text

Refer to “Title Formats” in Chapter
1 for details.

Blue, underlined text

Hyperlink to a web-site (URL)

Go to http://www.xilinx.com for the
latest speed files.

www.xilinx.com

MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.
Chapter 2

MicroBlaze Architecture

This chapter contains an overview of MicroBlaze™ features and detailed information on
MicroBlaze architecture including Big-Endian or Little-Endian bit-reversed format, 32-bit general
purpose registers, virtual-memory management, cache software support, and Fast Simplex Link
(FSL) or AXI4-Stream interfaces.

Overview
The MicroBlaze™ embedded processor soft core is a reduced instruction set computer (RISC)
optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAS). Figure 2-1
shows a functional block diagram of the MicroBlaze core.
Instruction-side Data-side
bus interface bus interface
Memory Management Unit (MMU)
- N
UTLB [oms |
M_AXI_IC |::> DU —/ (> M_AXI_DC
| e 0 n 7
0 0
IXCL_M < & % g > DXCL_M
- =p \1 =
o Program v ALU)
IXCL_S |:> Counter g - <::| DXCL_S
Special N Shift
Purpose .
ﬁ Reg?sters N Barrel Shift <,\"m:>
Branch v Multiplier
Target Z < orE >
Cache Divider
EN < _DLMB_ >
IPLB >
Bus — FPU Bus
IF . IF MO_AXIS..
IMB > | Instruction 1 { } {} M15_AXIS
Instruction SO_AXIS..
Decode |1 S15_AXIS
. . N\
—N] Register File MFSL 0..15 or
—] 32X 32b DWFSL 0..15
SFSL 0..15
. . / . or
Optional MicroBlaze feature DRFSL 0..15
Figure 2-1: MicroBlaze Core Block Diagram
MicroBlaze Processor Reference Guide www.xilinx.com 9

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Features

The MicroBlaze soft core processor is highly configurable, allowing you to select a specific set of
features required by your design.

The fixed feature set of the processor includes:

e Thirty-two 32-bit general purpose registers

e 32-bit instruction word with three operands and two addressing modes
e 32-bit address bus

e Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to allow selective
enabling of additional functionality. Older (deprecated) versions of MicroBlaze support a subset of
the optional features described in this manual. Only the latest (preferred) version of MicroBlaze
(v8.00) supports all options.

Xilinx recommends that all new designs use the latest preferred version of the MicroBlaze
processor.

Table 2-1, page 10 provides an overview of the configurable features by MicroBlaze versions.

Table 2-1: Configurable Feature Overview by MicroBlaze Version

MicroBlaze Versions
Feature

v7.00 v7.10 v7.20 v7.30 v8.00 v8.10 v8.20
Version Status obsolete | obsolete | obsolete | obsolete | deprecated | deprecated | preferred
Processor pipeline depth 3/5 3/5 3/5 3/5 3/5 3/5 3/5
On-chip Peripheral Bus (OPB) data side option option option No No No No
interface
On-chip Peripheral Bus (OPB) option option option No No No No
instruction side interface
Local Memory Bus (LMB) data side option option option option option option option
interface
Local Memory Bus (LMB) instruction option option option option option option option
side interface
Hardware barrel shifter option option option option option option option
Hardware divider option option option option option option option
Hardware debug logic option option option option option option option
Stream link interfaces 0-15 0-15 0-15 0-15 0-15 0-15 0-15

FSL FSL FSL FSL FSL/AXI FSL/AXI | FSL/AXI
Machine status set and clear instructions option option option option option option option
Instruction cache over IOPB interface No No No No No No No
Data cache over DOPB interface No No No No No No No
Instruction cache over Cache Link option option option option option option option
(IXCL) interface
10 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX. Overview
Table 2-1: Configurable Feature Overview by MicroBlaze Version
MicroBlaze Versions
Feature
v7.00 v7.10 v7.20 v7.30 v8.00 v8.10 v8.20

Data cache over Cache Link (DXCL) option option option option option option option
interface
4 or 8-word cache line option option option option option option option
Hardware exception support option option option option option option option
Pattern compare instructions option option option option option option option
Floating point unit (FPU) option option option option option option option
Disable hardware multiplier! option option option option option option option
Hardware debug readable ESR and EAR Yes Yes Yes Yes Yes Yes Yes
Processor Version Register (PVR) option option option option option option option
Area or speed optimized option option option option option option option
Hardware multiplier 64-bit result option option option option option option option
LUT cache memory option option option option option option option
Processor Local Bus (PLB) data side option option option option option option option
interface
Processor Local Bus (PLB) instruction option option option option option option option
side interface
Floating point conversion and square root | option option option option option option option
instructions
Memory Management Unit (MMU) option option option option option option option
Extended stream instructions option option option option option option option
Use Xilinx Cache Link for All I-Cache - option option option option option option
Memory Accesses
Use Xilinx Cache Link for All D-Cache - option option option option option option
Memory Accesses
Use Write-back Caching Policy for D- - - option option option option option
Cache
Cache Link (DXCL) protocol for D- - - option option option option option
Cache
Cache Link (IXCL) protocol for I-Cache - - option option option option option
Branch Target Cache (BTC) - - - option option option option
Streams for 1-Cache option option option option
Victim handling for I-Cache option option option option
Victim handling for D-Cache option option option option
AXI14 (M_AXI_DP) data side interface - - - - option option option
AXI14 (M_AXI_IP) instruction side - - - - option option option
interface

MicroBlaze Processor Reference Guide www.xilinx.com 11

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Table 2-1: Configurable Feature Overview by MicroBlaze Version

MicroBlaze Versions
Feature

v7.00 v7.10 v7.20 v7.30 v8.00 v8.10 v8.20
AXI14 (M_AXI_DC) protocol for D- - - - - option option option
Cache
AXI14 (M_AXI_IC) protocol for I1-Cache - - - - option option option
AXI4 protocol for stream accesses - - - - option option option
Fault tolerant features - - - - option option option
Tool selectable endianness - - - - option option option
Force distributed RAM for cache tags - - - - option option option
Configurable cache data widths - - - - option option option
Count Leading Zeros instruction - - - - - option option
Memory Barrier instruction - - - - - Yes Yes
Stack overflow and underflow detection - - - - - option option
Allow stream instructions in user mode - - - - - option option
Lockstep support option
Configurable use of FPGA primitives option

1. Used in Virtex®-4 and subsequent families, for saving MUL18 and DSP48 primitives.

12

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Data Types and Endianness

Data Types and Endianness

MicroBlaze uses Big-Endian or Little-Endian format to represent data, depending on the parameter

C_ENDI ANNESS. The hardware supported data types for MicroBlaze are word, half word, and

byte. When using the reversed load and store instructions LHUR, LWR, SHR and SWR, the bytes in

the data are reversed, as indicated by the byte-reversed order.

The bit and byte organization for each type is shown in the following tables.

Table 2-2: Word Data Type

Big-Endian Byte Address n n+1 n+2 n+3
Big-Endian Byte Significance MSByte LSByte
Big-Endian Byte Order n n+l n+2 n+3
Big-Endian Byte-Reversed Order n+3 n+2 n+1 n
Little-Endian Byte Address n+3 n+2 n+1 n
Little-Endian Byte Significance MSByte LSByte
Little-Endian Byte Order n+3 n+2 n+1 n
Little-Endian Byte-Reversed Order n n+1 n+2 n+3
Bit Label 0 31
Bit Significance MSBit LSBit

Table 2-3: Half Word Data Type
Big-Endian Byte Address n n+1
Big-Endian Byte Significance MSByte | LSByte
Big-Endian Byte Order n n+1
Big-Endian Byte-Reversed Order n+1 n
Little-Endian Byte Address n+1 n
Little-Endian Byte Significance MSByte | LSByte
Little-Endian Byte Order n+l n
Little-Endian Byte-Reversed Order n n+1
Bit Label 0 15
Bit Significance MSBit LSBit

Table 2-4: Byte Data Type
Byte Address n
Bit Label 0 7
Bit Significance MSBit LSBit

MicroBlaze Processor Reference Guide www.xilinx.com 13

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Instructions

Instruction Summary

All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand. Type B
instructions have one source register and a 16-bit immediate operand (which can be extended to 32
bits by preceding the Type B instruction with an imm instruction). Type B instructions have a single
destination register operand. Instructions are provided in the following functional categories:
arithmetic, logical, branch, load/store, and special. Table 2-6 lists the MicroBlaze instruction set.
Refer to Chapter 5, “MicroBlaze Instruction Set Architecture”for more information on these
instructions. Table 2-5 describes the instruction set nomenclature used in the semantics of each
instruction.

Table 2-5: Instruction Set Nomenclature

Symbol Description
Ra RO - R31, General Purpose Register, source operand a
Rb RO - R31, General Purpose Register, source operand b
Rd RO - R31, General Purpose Register, destination operand
SPR[X] Special Purpose Register number x
MSR Machine Status Register = SPR[1]
ESR Exception Status Register = SPR[5]
EAR Exception Address Register = SPR[3]
FSR Floating Point Unit Status Register = SPR[7]
PVRX Processor Version Register, where x is the register number = SPR[8192 + x]
BTR Branch Target Register = SPR[11]
PC Execute stage Program Counter = SPR[0]
X[y] Bit 'y of register x
xX[y:z] Bit range y to z of register x
X Bit inverted value of register x
Imm 16 bit immediate value
Immx x bit immediate value
FSLx 4 bit Fast Simplex Link (FSL) or AXI4-Stream port designator, where x is the port number
C Carry flag, MSR[29]
Sa Special Purpose Register, source operand
Sd Special Purpose Register, destination operand
s(x) Sign extend argument x to 32-bit value
*Addr Memory contents at location Addr (data-size aligned)
= Assignment operator
14 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

Table 2-5: Instruction Set Nomenclature (Continued)

Symbol Description

= Equality comparison

1= Inequality comparison

> Greater than comparison

>= Greater than or equal comparison
< Less than comparison

<= Less than or equal comparison
+ Avrithmetic add

* Avrithmetic multiply

/ Avrithmetic divide

>> X Bit shift right x bits

<< X Bit shift left x bits

and Logic AND

or Logic OR

xor Logic exclusive OR

opl if cond else op2 Perform opl if condition cond is true, else perform op2

& Concatenate. E.g. “0000100 & Imm7” is the concatenation of the fixed field “0000100” and a 7 bit
immediate value.

signed Operation performed on signed integer data type. All arithmetic operations are performed on signed
word operands, unless otherwise specified

unsigned Operation performed on unsigned integer data type

float Operation performed on floating point data type

clz(r) Count leading zeros

Table 2-6: MicroBlaze Instruction Set Summary

Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
ADD Rd,Ra,Rb 000000 | Rd Ra Rb | 00000000000 | Rd := Rb + Ra
RSUB Rd,Ra,Rb 000001 | Rd Ra Rb | 00000000000 | Rd:=Rb+Ra+1
ADDC Rd,Ra,Rb 000010 | Rd Ra Rb | 00000000000 | Rd:=Rb+Ra+C
RSUBC Rd,Ra,Rb 000011 | Rd Ra Rb | 00000000000 | Rd:=Rb+Ra+C
ADDK Rd,Ra,Rb 000100 | Rd Ra Rb | 00000000000 | Rd :=Rb + Ra
RSUBK Rd,Ra,Rb 000101 | Rd Ra Rb | 00000000000 | Rd:=Rb+Ra+ 1
ADDKC Rd,Ra,Rb 000110 | Rd Ra Rb | 00000000000 | Rd:=Rb+Ra+C
MicroBlaze Processor Reference Guide www.xilinx.com 15

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
RSUBKC Rd,Ra,Rb 000111 | Rd Ra Rb | 00000000000 | Rd:=Rb+Ra+C
CMP Rd,Ra,Rb 000101 | Rd Ra Rb | 00000000001 | Rd:=Rb+Ra+1
Rd[0] := 0 if (Rb >= Ra) else
Rd[0] :=1
CMPU Rd,Ra,Rb 000101 | Rd Ra Rb | 00000000011 | Rd := Rb + Ra + 1 (unsigned)
Rd[0] := 0 if (Rb >= Ra, unsigned) else
Rd[0] :=1
ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd :=s(Imm) + Ra
RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd :=s(lmm) + Ra + 1
ADDIC Rd,Ra,Imm 001010 | Rd Ra Imm Rd :=s(Imm)+Ra+C
RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd :=s(lmm) + Ra + C
ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd :=s(Imm) + Ra
RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd :=s(Imm) + Ra + 1
ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd :=s(Imm)+Ra+C
RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd :=s(lmm) + Ra+ C
MUL Rd,Ra,Rb 010000 | Rd Ra Rb | 00000000000 | Rd
MULH Rd,Ra,Rb 010000 | Rd Ra Rb | 00000000001 | Rd := (Ra * Rb) >> 32 (signed)
MULHU Rd,Ra,Rb 010000 | Rd Ra Rb | 00000000011 | Rd := (Ra * Rb) >> 32 (unsigned)
MULHSU Rd,Ra,Rb 010000 | Rd Ra Rb | 00000000010 | Rd := (Ra, signed * Rb, unsigned) >> 32
(signed)
BSRA Rd,Ra,Rb 010001 | Rd Ra Rb | 01000000000 | Rd :=s(Ra >> Rb)
BSLL Rd,Ra,Rb 010001 | Rd Ra Rb | 10000000000 | Rd := (Ra<<Rb) &0
MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)
BSRLI Rd,Ra,Imm 011001 | Rd Ra 00000000000 & Rd: =0 & (Ra>>Immb5)
Imm5
BSRAI Rd,Ra,Imm 011001 | Rd Ra 00000010000 & Rd := s(Ra >> Immb)
Imm5
BSLLI Rd,Ra,Imm 011001 | Rd Ra 00000100000 & Rd := (Ra << Immb5) & 0
Imm5
IDIV Rd,Ra,Rb 010010 | Rd Ra Rb | 00000000000 | Rd
IDIVU Rd,Ra,Rb 010010 | Rd Ra Rb | 00000000010 | Rd := Rb/Ra, unsigned
TNEAGETD Rd,Rb 010011 | Rd | 00000 | Rb ONOTAE Rd := FSL Rb[28:31] (data read)
00000 MSR[FSL] := 1 if (FSL_S_Control = 1)

MSR[C] := not FSL_S_Exists if N = 1

16

www.xilinx.com

MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

Table 2-6: MicroBlaze Instruction Set Summary (Continued)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
TNAPUTD Ra,Rb 010011 | 00000 | Ra Rb ONOTAO FSL Rb[28:31] := Ra (data write)
00000 MSR[C] :=FSL_M_FullifN=1
TNECAGETD Rd,Rb 010011 Rd | 00000 | Rb ON1TAE Rd := FSL Rb[28:31] (control read)
00000 MSR[FSL] := 1 if (FSL_S_Control =0)
MSR[C] :=not FSL_S_Existsif N =1
TNCAPUTD Ra,Rb 010011 | 00000 | Ra Rb ON1TAO FSL Rb[28:31] := Ra (control write)
00000 MSR[C] :=FSL_M_Full ifN=1
FADD Rd,Ra,Rb 010110 | Rd Ra Rb | 00000000000 | Rd := Rb+Ra, float!
FRSUB Rd,Ra,Rb 010110 | Rd Ra Rb | 00010000000 | Rd := Rb-Ra, float!
FMUL Rd,Ra,Rb 010110 | Rd Ra Rb | 00100000000 | Rd := Rb*Ra, float!
FDIV Rd,Ra,Rb 010110 | Rd Ra Rb | 00110000000 | Rd := Rb/Ra, float!
FCMP.UN Rd,Ra,Rb 010110 Rd Ra Rb | 01000000000 | Rd := 1 if (Rb = NaN or Ra = NaN, floatl)
else
Rd:=0
FCMP.LT Rd,Ra,Rb 010110 | Rd Ra Rb | 01000010000 | Rd := 1 if (Rb < Ra, floatl) else
Rd:=0
FCMP.EQ Rd,Ra,Rb 010110 | Rd Ra Rb | 01000100000 | Rd := 1 if (Rb = Ra, floatl) else
Rd:=0
FCMP.LE Rd,Ra,Rb 010110 | Rd Ra Rb | 01000110000 | Rd :=1 if (Rb <= Ra, floatl) else
Rd:=0
FCMP.GT Rd,Ra,Rb 010110 | Rd Ra Rb | 01001000000 | Rd :=1 if (Rb > Ra, floatl) else
Rd:=0
FCMP.NE Rd,Ra,Rb 010110 | Rd Ra Rb | 01001010000 | Rd := 1 if (Rb != Ra, floatl) else
Rd:=0
FCMP.GE Rd,Ra,Rb 010110 Rd Ra Rb | 01001100000 | Rd := 1 if (Rb >= Ra, floatl) else
Rd:=0
FLT Rd,Ra 010110 | Rd Ra 0 | 01010000000 | Rd := float (Ra)!
FINT Rd,Ra 010110 | Rd Ra 0 01100000000 | Rd :=int (Ra)!
FSQRT Rd,Ra 010110 | Rd Ra 0 | 01110000000 | Rd :=sgrt (Ra)l
TNEAGET Rd,FSLx 011011 | Rd | 00000 | ONOTAEO00000 & | Rd :=FSLx (data read, blocking if N = 0)
FSLx MSR[FSL] := 1 if (FSLx_S_Control = 1)
MSR[C] :=not FSLx_S_Exists if N =1
TNAPUT Ra,FSLx 011011 | 00000 | Ra 1NOTA0000000 & | FSLx :=Ra (data write, blocking if N = 0)
FSLx MSR[C] := FSLx_M_Full if N =1
TNECAGET Rd,FSLx 011011 Rd | 00000 | ON1TAEO00000 & | Rd :=FSLx (control read, blocking if N = 0)
FSLx MSR[FSL] := 1 if (FSLx_S_Control = 0)

MSR[C] := not FSLx_S_Exists if N =1

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

17

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Table 2-6: MicroBlaze Instruction Set Summary (Continued)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
TNCAPUT Ra,FSLx 011011 | 00000 | Ra IN1TAOO00000 & | FSLx :=Ra (control write, blocking if N = 0)
FSLx MSR[C] :=FSLx M_Full ifN=1

OR Rd,Ra,Rb 100000 | Rd Ra Rb | 00000000000 | Rd := Raor Rb

AND Rd,Ra,Rb 100001 | Rd Ra Rb | 00000000000 | Rd := Ra and Rb

XOR Rd,Ra,Rb 100010 | Rd Ra Rb | 00000000000 | Rd := Ra xor Rb

ANDN Rd,Ra,Rb 100011 | Rd Ra Rb | 00000000000 | Rd := Raand Rb

PCMPBF Rd,Ra,Rb 100000 | Rd Ra Rb | 10000000000 | Rd :=1 if (Rb[0:7] = Ra[0:7]) else
Rd := 2 if (Rb[8:15] = Ra[8:15]) else
Rd := 3 if (Rb[16:23] = Ra[16:23]) else
Rd := 4 if (Rb[24:31] = Ra[24:31]) else
Rd:=0

PCMPEQ Rd,Ra,Rb 100010 | Rd Ra Rb | 10000000000 | Rd :=1 if (Rd = Ra) else
Rd:=0

PCMPNE Rd,Ra,Rb 100011 Rd Ra Rb | 10000000000 | Rd := 1 if (Rd != Ra) else
Rd:=0

SRA Rd,Ra 100100 | Rd Ra 0000000000000001 | Rd :=s(Ra>>1)
C:=Ra[31]

SRC Rd,Ra 100100 | Rd Ra 0000000000100001 | Rd:=C & (Ra>>1)
C:=Ra[31]

SRL Rd,Ra 100100 | Rd Ra 0000000001000001 | Rd:=0 & (Ra>>1)
C :=Ra[31]

SEXT8 Rd,Ra 100100 | Rd Ra 0000000001100000 | Rd :=s(Ra[24:31])

SEXT16 Rd,Ra 100100 | Rd Ra 0000000001100001 | Rd :=s(Ra[16:31])

CLZRd, Ra 100100 | Rd Ra 0000000011100000 | Rd =clz(Ra)

WIC Ra,Rb 100100 | 00000 | Ra Rb | 00001101000 | ICache_Line[Ra >> 4].Tag := 0 if
(C_ICACHE_LINE_LEN =4)
ICache_Line[Ra >>5].Tag := 0 if
(C_ICACHE_LINE_LEN = 8)

WDC Ra,Rb 100100 | 00000 | Ra Rb | 00001100100 | Cache line is cleared, discarding stored data.
DCache_Line[Ra >> 4].Tag := 0 if
(C_DCACHE_LINE_LEN =4)
DCache_Line[Ra >>5].Tag := 0 if
(C_DCACHE_LINE_LEN = 8)

WDC.FLUSH Ra,Rb 100100 | 00000 | Ra Rb | 00001110100 | Cache line is flushed, writing stored data to
memory, and then cleared. Used when
C_DCACHE_USE_WRITEBACK = 1.

18

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A

0-5

6-10

11-15

16-20 21-31

Type B

0-5

6-10

11-15

16-31

Semantics

WDC.CLEAR Ra,Rb

100100

00000

Ra

Rb

00001110110

Cache line with matching address is cleared,
discarding stored data. Used when
C_DCACHE_USE_WRITEBACK =1.

MBAR Imm

101110

Imm

00010

0000000000000100

PC := PC + 4; Wait for memory accesses.

MTS Sd,Ra

100101

00000

Ra

11 & Sd

SPR[Sd] := Ra, where:

e SPR[0x0001] is MSR

e SPR[0x0007] is FSR

e SPR[0x0800] is SLR

e SPR[0x0802] is SHR

e SPR[0x1000] is PID

e SPR[0x1001] is ZPR

e SPR[0x1002] is TLBX
e SPR[0x1003] is TLBLO
e SPR[0x1004] is TLBHI
e SPR[0x1005] is TLBSX

MFS Rd,Sa

100101

Rd

00000

10 & Sa

Rd := SPR[Sa], where:

e SPR[0x0000] is PC

e SPR[0x0001] is MSR

e SPR[0x0003] is EAR

e SPR[0x0005] is ESR

e SPR[0x0007] is FSR

e SPR[0x000B] is BTR

e SPR[0x000D] is EDR

e SPR[0x0800] is SLR

e SPR[0x0802] is SHR

¢ SPR[0x1000] is PID

e SPR[0x1001] is ZPR

e SPR[0x1002] is TLBX
e SPR[0x1003]is TLBLO
e SPR[0x1004] is TLBHI
e SPR[0x2000 to 0x200B] is PVR[O0 to 11]

MSRCLR Rd,Imm

100101

Rd

00001

00 & Imm14

Rd := MSR
MSR := MSR and Imm14

MSRSET Rd,Imm

100101

Rd

00000

00 & Imm14

Rd := MSR
MSR := MSR or Imm14

BR Rb

100110

00000

00000

Rb

00000000000

PC:=PC+RbDb

BRD Rb

100110

00000

10000

Rb

00000000000

PC:=PC+RbDb

BRLD Rd,Rb

100110

Rd

10100

Rb

00000000000

PC:=PC+RbDb
Rd :=PC

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

19

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Table 2-6: MicroBlaze Instruction Set Summary (Continued)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
BRA RD 100110 | 00000 | 01000 | Rb | 00000000000 | PC:=Rb
BRAD Rb 100110 | 00000 | 11000 | Rb | 00000000000 | PC:=Rb
BRALD Rd,Rb 100110 Rd 11100 | Rb | 00000000000 | PC:=Rb
Rd :=PC
BRK Rd,Rb 100110 Rd | 01100 | Rb | 00000000000 | PC:=Rb
Rd :=PC
MSR[BIP] := 1
BEQ Ra,Rb 100111 | 00000 Ra Rb | 00000000000 | PC:=PC+RbifRa=0
BNE Ra,Rb 100111 | 00001 | Ra Rb | 00000000000 | PC:=PC+RbifRa!=0
BLT Ra,Rb 100111 | 00010 | Ra Rb | 00000000000 | PC:=PC+RbifRa<0
BLE Ra,Rb 100111 | 00011 | Ra Rb | 00000000000 | PC:=PC+RbifRa<=0
BGT Ra,Rb 100111 | 00100 Ra Rb | 00000000000 | PC:=PC+RbifRa>0
BGE Ra,Rb 100111 | 00101 Ra Rb | 00000000000 | PC:=PC+RbifRa>=0
BEQD Ra,Rb 100111 | 10000 Ra Rb | 00000000000 | PC:=PC+RbifRa=0
BNED Ra,Rb 100111 | 10001 | Ra Rb | 00000000000 | PC:=PC+RbifRa!=0
BLTD Ra,Rb 100111 | 10010 | Ra Rb | 00000000000 | PC:=PC+RbifRa<0
BLED Ra,Rb 100111 | 10011 Ra Rb | 00000000000 | PC:=PC+RbifRa<=0
BGTD Ra,Rb 100111 | 10100 Ra Rb | 00000000000 | PC:=PC+RbifRa>0
BGED Ra,Rb 100111 | 10101 Ra Rb | 00000000000 | PC:=PC+RbifRa>=0
ORI Rd,Ra,Imm 101000 | Rd Ra Imm Rd := Ra or s(Imm)
ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)
XORI Rd,Ra,Imm 101010 | Rd Ra Imm Rd := Ra xor s(Imm)
ANDNI Rd,Ra,Imm 101011 | Rd Ra Imm Rd := Ra and s(Imm)
IMM Imm 101100 | 00000 | 00000 Imm Imm[0:15] := Imm
RTSD Ra,Imm 101101 | 10000 | Ra Imm PC := Ra + s(Imm)
RTID Ra,Imm 101101 | 10001 | Ra Imm PC := Ra + s(Imm)
MSRI[IE] := 1
RTBD Ra,Imm 101101 | 10010 | Ra Imm PC := Ra + s(Imm)
MSR[BIP] := 0
RTED Ra,Imm 101101 | 10100 | Ra Imm PC := Ra + s(Imm)
MSR[EE] := 1, MSR[EIP] := 0
ESR:=0
BRI Imm 101110 | 00000 | 00000 Imm PC :=PC + s(Imm)
BRID Imm 101110 | 00000 | 10000 Imm PC :=PC + s(Imm)
20 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

Table 2-6: MicroBlaze Instruction Set Summary (Continued)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31

BRLID Rd,Imm 101110 | Rd | 10100 Imm PC := PC + s(Imm)

Rd :=PC
BRAI Imm 101110 | 00000 | 01000 Imm PC := s(Imm)
BRAID Imm 101110 | 00000 | 11000 Imm PC := s(Imm)
BRALID Rd,Imm 101110 | Rd | 11100 Imm PC := s(Imm)

Rd :=PC
BRKI Rd,Imm 101110 | Rd | 01100 Imm PC := s(Imm)

Rd :=PC

MSR[BIP] :=1
BEQI Ra,Imm 101111 | 00000 | Ra Imm PC :=PC + s(Imm) if Ra=0
BNEI Ra,Imm 101111 | 00001 | Ra Imm PC:=PC+s(lmm)ifRa!=0
BLTI Ra,Imm 101111 | 00010 | Ra Imm PC:=PC +s(lmm) if Ra<0
BLEI Ra,Imm 101111 | 00011 | Ra Imm PC:=PC+s(lmm)ifRa<=0
BGTI Ra,Imm 101111 | 00100 | Ra Imm PC:=PC+s(Imm)ifRa>0
BGEI Ra,Imm 101111 | 00101 | Ra Imm PC :=PC + s(Imm) if Ra>=0
BEQID Ra,Imm 101111 | 10000 | Ra Imm PC :=PC + s(Imm) if Ra=0
BNEID Ra,Imm 101111 | 10001 | Ra Imm PC:=PC+s(lmm)ifRa!=0
BLTID Ra,Imm 101111 | 10010 | Ra Imm PC:=PC +s(lmm) if Ra<0
BLEID Ra,Imm 101111 | 10011 | Ra Imm PC:=PC +s(lmm)ifRa<=0
BGTID Ra,Imm 101111 | 10100 | Ra Imm PC:=PC+s(Imm)ifRa>0
BGEID Ra,Imm 101111 | 10101 | Ra Imm PC :=PC + s(Imm) if Ra>=0
LBU Rd,Ra,Rb 110000 | Rd Ra Rb | 00000000000 | Addr:=Ra+ Rb
LBUR Rd,Ra,Rb 01000000000 | Rd[0:23] :=0

Rd[24:31] := *Addr[0:7]
LHU Rd,Ra,Rb 110001 | Rd Ra Rb | 00000000000 | Addr:=Ra+ Rb
LHUR Rd,Ra,Rb 01000000000 | RA[0:15] :=0

Rd[16:31] := *Addr[0:15]
LW Rd,Ra,Rb 110010 | Rd Ra Rb | 00000000000 | Addr :=Ra + Rb
LWR Rd,Ra,Rb 01000000000 | Rd :=*Addr
LWX Rd,Ra,Rb 110010 | Rd Ra Rb | 10000000000 | Addr := Ra+ Rb

Rd :=*Addr

Reservation := 1
SB Rd,Ra,Rb 110100 | Rd Ra Rb | 00000000000 | Addr ;= Ra+ Rb
SBR Rd,Ra,Rb 01000000000 | “Addr[0:8] := Rd[24:31]

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

21

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 | 6-10 | 11-15 16-20 21-31
Semantics
Type B 0-5 | 6-10 | 11-15 16-31
SH Rd.Ra,Rb 110101 | Rd | Ra | Rb | 00000000000 | Addr:=Ra+ Rb
SHR Rd,Ra,Rb 01000000000 | “Addr[0:16] := Rd[16:31]
SW Rd,Ra,Rb 110110 | Rd | Ra | Rb | 00000000000 | Addr:=Ra + Rb
SWR Rd.Ra,Rb 01000000000 | *Addr := Rd
SWX Rd,Ra,Rb 110110 | Rd | Ra | Rb | 10000000000 | Addr:=Ra+ Rb

*Addr := Rd if Reservation = 1
Reservation ;=0

LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:23] :=0
Rd[24:31] := *Addr[0:7]
LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:15] :=0
Rd[16:31] := *Addr[0:15]
LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm)
Rd := *Addr
SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:7] := Rd[24:31]
SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:15] := Rd[16:31]
SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm)

*Addr := Rd

1. Due to the many different corner cases involved in floating point arithmetic, only the normal behavior is described. A full description of the
behavior can be found in Chapter 5, “MicroBlaze Instruction Set Architecture.”

Semaphore Synchronization

The LWX and SWX. instructions are used to implement common semaphore operations, including
test and set, compare and swap, exchange memory, and fetch and add. They are also used to
implement spinlocks.

These instructions are typically used by system programs and are called by application programs as
needed. Generally, a program uses LWX to load a semaphore from memory, causing the reservation
to be set (the processor maintains the reservation internally). The program can compute a result
based on the semaphore value and conditionally store the result back to the same memory location
using the SWX instruction. The conditional store is performed based on the existence of the
reservation established by the preceding LWX instruction. If the reservation exists when the store is
executed, the store is performed and MSR[C] is cleared to 0. If the reservation does not exist when
the store is executed, the target memory location is not modified and MSR[C] is set to 1.

If the store is successful, the sequence of instructions from the semaphore load to the semaphore
store appear to be executed atomically—no other device modified the semaphore location between
the read and the update. Other devices can read from the semaphore location during the operation.
For a semaphore operation to work properly, the LWX instruction must be paired with an SWX
instruction, and both must specify identical addresses. The reservation granularity in MicroBlaze is

22

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

http://www.xilinx.com

& XILINX.

Instructions

a word. For both instructions, the address must be word aligned. No unaligned exceptions are
generated for these instructions.

The conditional store is always performed when a reservation exists, even if the store address does
not match the load address that set the reservation.

Only one reservation can be maintained at a time. The address associated with the reservation can be
changed by executing a subsequent LWX instruction. The conditional store is performed based upon
the reservation established by the last LWX instruction executed. Executing an SWX instruction
always clears a reservation held by the processor, whether the address matches that established by
the LWX or not.

Reset, interrupts, exceptions, and breaks (including the BRK and BRKI instructions) all clear the
reservation.

The following provides general guidelines for using the LWX and SWX instructions:

e The LWX and SWX instructions should be paired and use the same address.

e Anunpaired SWX instruction to an arbitrary address can be used to clear any reservation held
by the processor.

e A conditional sequence begins with an LWX instruction. It can be followed by memory
accesses and/or computations on the loaded value. The sequence ends with an SWX
instruction. In most cases, failure of the SWX instruction should cause a branch back to the
LWX for a repeated attempt.

e An LWX instruction can be left unpaired when executing certain synchronization primitives if
the value loaded by the LWX is not zero. An implementation of Test and Set exemplifies this:

| oop: |wx r5r3,r0 ; load and reserve
bnei r5, next ; branch if not equal to zero
addik r5,r5,1 ; increnent val ue
SWX r5r3,r0 ; try to store non-zero val ue
addic r5,r0,0 ; check reservation
bnei r5,1 oop ; loop if reservation |ost
next :

e Performance can be improved by minimizing looping on an LWX instruction that fails to
return a desired value. Performance can also be improved by using an ordinary load instruction
to do the initial value check. An implementation of a spinlock exemplifies this:

loop: Iw r5r3,r0 ; load the word
bnei r5,1 oop ; loop back if word not equal to O
| wx r5r3,r0 ; try reserving again
bnei r5,1 oop ; likely that no branch is needed
addik r5,r5,1 ; increnent val ue
SWX r5r3,r0 ; try to store non-zero val ue
addic r5,r0,0 ; check reservation
bnei r5,1 oop ; loop if reservation |ost

e Minimizing the looping on an LWX/SWX instruction pair increases the likelihood that forward
progress is made. The old value should be tested before attempting the store. If the order is
reversed (store before load), more SWX instructions are executed and reservations are more
likely to be lost between the LWX and SWX instructions.

MicroBlaze Processor Reference Guide www.xilinx.com 23

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Self-modifying Code

When using self-modifying code software must ensure that the modified instructions have been
written to memory prior to fetching them for execution. There are several aspects to consider:

e The instructions to be modified may already have been fetched prior to modification:

L

*

L4

L

into the instruction prefetch buffer,

into the instruction cache, if it is enabled,

into a stream buffer, if instruction cache stream buffers are used,

into the instruction cache, and then saved in a victim buffer, if victim buffers are used.

To ensure that the modified code is always executed instead of the old unmodified code,
software must handle all these cases.

o If one or more of the instructions to be modified is a branch, and the branch target cache is
used, the branch target address may have been cached.

To avoid using the cached branch target address, software must ensure that the branch target
cache is cleared prior to executing the modified code.

e The modified instructions may not have been written to memory prior to execution:

L

*

L4

they may be en route to memory, in temporary storage in the interconnect or the memory
controller,

they may be stored in the data cache, if write-back cache is used,
they may be saved in a victim buffer, if write-back cache and victim buffers are used.

Software must ensure that the modified instructions have been written to memory before being
fetched by the processor.

The annotated code below shows how each of the above issues can be addressed. This code assumes
that both instruction cache and write-back data cache is used. If not, the corresponding instructions
can be omitted.

The following code exemplifies storing a modified instruction, when using AXI interconnect:

S r5,r6,0 ; r5 = new instruction
; 16 = physical instruction address
wdc. flush r6,r0 ; flush wite-back data cache |ine
mbar 1 ; ensure new instruction is witten to menory
W C r7,r0 ; invalidate line, enpty stream & victimbuffers
; r7 = virtual instruction address
nbar 2 ; enpty prefetch buffer, clear branch target cache

The following code exemplifies storing a modified instruction, when using XCL:

SW r5r6,0 ; r5 = new instruction
; 16 = physical instruction address

wdc. flush r6,r0 ; flush wite-back data cache |ine

| 'wi ro,r6,0 ; read back newinstruction frommenory to ensure it
has been witten to nenory
Wi c r7,r0 ; invalidate line, enpty stream & victimbuffers
; r7 = virtual instruction address
nmbar 2 ; enpty prefetch buffer, clear branch target cache

The physical and virtual addresses above are identical, unless MMU virtual mode is used. If the
MMU is enabled, the code sequences must be executed in real mode, since WIC and WDC are
privileged instructions.

The first instruction after the code sequences above must not be modified, since it may have been
prefetched.

24

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

http://www.xilinx.com

& XILINX. Registers

Registers

MicroBlaze has an orthogonal instruction set architecture. It has thirty-two 32-bit general purpose
registers and up to eighteen 32-bit special purpose registers, depending on configured options.

General Purpose Registers

The thirty-two 32-bit General Purpose Registers are numbered RO through R31. The register file is
reset on bit stream download (reset value is 0x00000000). Figure 2-2 is a representation of a General
Purpose Register and Table 2-7 provides a description of each register and the register reset value (if
existing).

Note: The register file is not reset by the external reset inputs: Reset , MB_Reset and Debug_Rst .

T
RO-R31

Figure 2-2: RO-R31

Table 2-7: General Purpose Registers (R0-R31)

Bits Name Description Reset Value

0:31 RO Always has a value of zero. Anything writtento | 0x00000000
RO is discarded

0:31 R1 through R13 32-bit general purpose registers -

0:31 R14 32-bit register used to store return addresses -
for interrupts.

0:31 R15 32-bit general purpose register. Recommended -
for storing return addresses for user vectors.

0:31 R16 32-bit register used to store return addresses -
for breaks.

0:31 R17 If MicroBlaze is configured to support -

hardware exceptions, this register is loaded
with the address of the instruction following
the instruction causing the HW exception,
except for exceptions in delay slots that use
BTR instead (see “Branch Target Register
(BTR)”); if not, it is a general purpose register.

0:31 R18 through R31 | R18 through R31 are 32-bit general purpose -
registers.

Refer to Table 4-2 for software conventions on general purpose register usage.

MicroBlaze Processor Reference Guide www.xilinx.com 25
UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Special Purpose Registers

Program Counter (PC)

The Program Counter (PC) is the 32-bit address of the execution instruction. It can be read with an
MFS instruction, but it cannot be written with an MTS instruction. When used with the MFS
instruction the PC register is specified by setting Sa = 0x0000. Figure 2-3 illustrates the PC and
Table 2-8 provides a description and reset value.

31

/l\
PC

Figure 2-3: PC

Table 2-8: Program Counter (PC)

Bits Name Description Reset Value

0:31 |PC Program Counter 0x00000000

Address of executing instruction, that is, “mfs r2 0” stores
the address of the mfs instruction itself in R2.

Machine Status Register (MSR)

The Machine Status Register contains control and status bits for the processor. It can be read with an
MFS instruction. When reading the MSR, bit 29 is replicated in bit 0 as the carry copy. MSR can be
written using either an MTS instruction or the dedicated MSRSET and MSRCLR instructions.

When writing to the MSR using MSRSET or MSRCLR, the Carry bit takes effect immediately and
the remaining bits take effect one clock cycle later. When writing using MTS, all bits take effect one
clock cycle later. Any value written to bit 0 is discarded.

When used with an MTS or MFS instruction, the MSR is specified by setting Sx = 0x0001.
Figure 2-4 illustrates the MSR register and Table 2-9 provides the bit description and reset values.

[0
T

|17‘18|19‘20‘21‘22‘23‘24‘25‘26‘27|28‘29‘30‘31|

CcC

T T T T T T T T TT
RESERVED VMS VM UMS UM PVR EIP EE DCEDZOICEFSLBIP C IE RES

Figure 2-4: MSR

26

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Registers

Table 2-9:

Machine Status Register (MSR)

Bits

Name

Description

Reset Value

0

CC

Arithmetic Carry Copy

Copy of the Arithmetic Carry (bit 29). CC is always the
same as bit C.

0

1:16

Reserved

17

VMS

Virtual Protected Mode Save

Only available when configured with an MMU
(if C_USE_MVU>1and C_AREA_OPTI M ZED = 0)

Read/Write

18

VM

Virtual Protected Mode

0 = MMU address translation and access protection
disabled, with C_USE_MMUJ= 3 (Virtual). Access protection
disabled with C_USE_MWU = 2 (Protection)

1=MMU address translation and access protection enabled,
with C_USE_MWU= 3 (Virtual). Access protection enabled,
with C_USE MU = 2 (Protection).

Only available when configured with an MMU
(if C_USE_WMJ>1and C_AREA_OPTI M ZED=0)

Read/Write

19

UMS

User Mode Save

Only available when configured with an MMU
(if C_USE_MMUJ> 0 and C_AREA_OPTI M ZED=0)

Read/Write

20

UM

User Mode
0 = Privileged Mode, all instructions are allowed
1 = User Mode, certain instructions are not allowed

Only available when configured with an MMU
(if C_USE_MMUJ> 0 and C_AREA_OPTI M ZED=0)

Read/Write

21

PVR

Processor Version Register exists

0 = No Processor \Version Register
1 = Processor \Version Register exists

Read only

Based on
parameter
C PVR

22

EIP

Exception In Progress

0 = No hardware exception in progress
1 = Hardware exception in progress

Only available if configured with exception support
(C_* _EXCEPTI ONor C_USE_MWJ > 0)

Read/Write

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

27

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Table 2-9:

Machine Status Register (MSR) (Continued)

Bits

Name

Description

Reset Value

23

EE

Exception Enable

0 = Hardware exceptions disabled!
1 = Hardware exceptions enabled

Only available if configured with exception support
(C_* _EXCEPTI ONor C_USE_MWJ > 0)

Read/Write

0

24

DCE

Data Cache Enable

0 = Data Cache disabled
1 = Data Cache enabled

Only available if configured to use data cache
(C_USE_DCACHE = 1)

Read/Write

25

DzO

Division by Zero or Division Overflow?

0 = No division by zero or division overflow has occurred
1 = Division by zero or division overflow has occurred

Only available if configured to use hardware divider
(C_USE_DIV=1)

Read/Write

26

ICE

Instruction Cache Enable

0 = Instruction Cache disabled
1 = Instruction Cache enabled

Only available if configured to use instruction cache
(C_USE_I CACHE = 1)

Read/Write

27

FSL

Stream (FSL or AXI) Error

0 = get or getd had no error
1 = get or getd control type mismatch

This bit is sticky, i.e. it is set by a get or getd instruction
when a control bit mismatch occurs. To clear it an mts or
msrclr instruction must be used.

Only available if configured to use stream links
(C_FSL_LI NKS > 0)

Read/Write

28

BIP

Break in Progress

0 = No Break in Progress
1 = Break in Progress

Break Sources can be software break instruction or hardware

break from Ext _Br k or Ext _NM Br k pin.
Read/Write

28

www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Registers
Table 2-9: Machine Status Register (MSR) (Continued)
Bits Name Description Reset Value
29 C Arithmetic Carry 0
0 = No Carry (Borrow)
1 = Carry (No Borrow)
Read/Write
30 IE Interrupt Enable 0
0 = Interrupts disabled
1 = Interrupts enabled
Read/Write
31 - Reserved 0

1. The MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB Miss Exception,

Instruction TLB Miss Exception) cannot be disabled, and are not affected by this bit.

2. This bit is only used for integer divide-by-zero or divide overflow signaling. There is a floating point equivalent
in the FSR. The DZO-bit flags divide by zero or divide overflow conditions regardless if the processor is
configured with exception handling or not.

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

29

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Exception Address Register (EAR)

The Exception Address Register stores the full load/store address that caused the exception for the
following:

e Anunaligned access exception that means the unaligned access address
e A DPLB or M_AXI_DP exception that specifies the failing PLB or AXI4 data access address
e A data storage exception that specifies the (virtual) effective address accessed

e An instruction storage exception that specifies the (virtual) effective address read

e A data TLB miss exception that specifies the (virtual) effective address accessed

e Aninstruction TLB miss exception that specifies the (virtual) effective address read

The contents of this register is undefined for all other exceptions. When read with the MFS
instruction, the EAR is specified by setting Sa = 0x0003. The EAR register is illustrated in
Figure 2-5 and Table 2-10 provides bit descriptions and reset values.

31
T
EAR
Figure 2-5: EAR
Table 2-10: Exception Address Register (EAR)
Bits Name Description Reset Value
0:31 EAR Exception Address Register 0x00000000

30

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Registers

Exception Status Register (ESR)

The Exception Status Register contains status bits for the processor. When read with the MFS
instruction, the ESR is specified by setting Sa = 0x0005. The ESR register is illustrated in
Figure 2-6, Table 2-11 provides bit descriptions and reset values, and Table 2-12 provides the

Exception Specific Status (ESS).

‘ 19 ‘20 31|
T T | T
RESERVED DS ESS EC
Figure 2-6: ESR
Table 2-11: Exception Status Register (ESR)
Bits Name Description Reset Value
0:18 Reserved
19 DS Delay Slot Exception. 0

0 = not caused by delay slot instruction
1 = caused by delay slot instruction

00000 = Stream exception

00001 = Unaligned data access exception
00010 = Illegal op-code exception

00011 = Instruction bus error exception
00100 = Data bus error exception

00101 = Divide exception

00110 = Floating point unit exception
00111 = Privileged instruction exception
00111 = Stack protection violation exception
10000 = Data storage exception

10001 = Instruction storage exception
10010 = Data TLB miss exception

10011 = Instruction TLB miss exception

Read-only

Read-only

20:26 ESS Exception Specific Status See Table 2-12
For details refer to Table 2-12.
Read-only

27:31 EC Exception Cause 0

MicroBlaze Processor Reference Guide www.xilinx.com
UG081 (v13.4)

31

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Table 2-12: Exception Specific Status (ESS)

Exception Bits Name Description Reset Value
Cause
Unaligned 20 W Word Access Exception 0
Data Access 0 = unaligned halfword access
1 = unaligned word access
21 S Store Access Exception 0
0 = unaligned load access
1 = unaligned store access
22:26 Rx Source/Destination Register 0
General purpose register used as
source (Store) or destination (Load)
in unaligned access
Illegal 20:26 Reserved 0
Instruction
Instruction 20 ECC Exception caused by ILMB 0
bus error correctable or uncorrectable error
21:26 Reserved
Data bus 20 ECC Exception caused by DLMB
error correctable or uncorrectable error
21:26 Reserved
Divide 20 DEC Divide - Division exception cause
0 = Divide-By-Zero
1 = Division Overflow
21:26 Reserved
Floating 20:26 Reserved
point unit
Privileged 20:26 Reserved 0
instruction
Stack 20:26 Reserved 0
protection
violation
Stream 20:22 Reserved
23:26 FSL Stream (FSL or AXI) index that
caused the exception
Data storage | 20 Dlz Data storage - Zone protection 0
0 = Did not occur
1 =Occurred
21 S Data storage - Store instruction 0
0 = Did not occur
1 = Occurred
22:26 Reserved 0
32 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX. Registers
Table 2-12: Exception Specific Status (ESS) (Continued)
Exception Bits Name Description Reset Value
Cause
Instruction 20 DIz Instruction storage - Zone protection 0
storage 0 = Did not occur
1 = Occurred
21:26 Reserved
Data TLB 20 Reserved
miss 21 S Data TLB miss - Store instruction
0 = Did not occur
1 = Occurred
22:26 Reserved
Instruction 20:26 Reserved
TLB miss

Branch Target Register (BTR)

The Branch Target Register only exists if the MicroBlaze processor is configured to use exceptions.
The register stores the branch target address for all delay slot branch instructions executed while
MSRI[EIP] = 0. If an exception is caused by an instruction in a delay slot (that is, ESR[DS]=1), the
exception handler should return execution to the address stored in BTR instead of the normal
exception return address stored in R17. When read with the MFS instruction, the BTR is specified
by setting Sa = 0x000B. The BTR register is illustrated in Figure 2-7 and Table 2-13 provides bit
descriptions and reset values.

0 31
T
BTR
Figure 2-7: BTR
Table 2-13: Branch Target Register (BTR)
Bits Name Description Reset Value
0:31 BTR Branch target address used by handler when 0x00000000
returning from an exception caused by an
instruction in a delay slot.
Read-only
MicroBlaze Processor Reference Guide www.xilinx.com 33

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Floating Point Status Register (FSR)

The Floating Point Status Register contains status bits for the floating point unit. It can be read with
an MFS, and written with an MTS instruction. When read or written, the register is specified by
setting Sa = 0x0007. The bits in this register are sticky — floating point instructions can only set bits
in the register, and the only way to clear the register is by using the MTS instruction. Figure 2-8
illustrates the FSR register and Table 2-14 provides bit descriptions and reset values.

|27 28 29 30 31|

T T T T
RESERVED 10 DZ OF UF DO

Figure 2-8: FSR

Table 2-14: Floating Point Status Register (FSR)

Bits Name Description Reset Value
0:26 Reserved undefined
27 10 Invalid operation 0
28 Dz Divide-by-zero 0
29 OF Overflow 0
30 UF Underflow 0
31 DO Denormalized operand error 0

Exception Data Register (EDR)

The Exception Data Register stores data read on a stream link (FSL or AXI) that caused a stream
exception.

The contents of this register is undefined for all other exceptions. When read with the MFS
instruction, the EDR is specified by setting Sa = 0x000D. Figure 2-9 illustrates the EDR register and
Table 2-15 provides bit descriptions and reset values.

Note: The register is only implemented if C_FSL_LI NKSis greater than 0 and C_FSL_EXCEPTI ON
issetto 1.

31
T
EDR
Figure 2-9: EDR
Table 2-15: Exception Data Register (EDR)
Bits | Name Description Reset Value
0:31 | EDR Exception Data Register 0x00000000
34 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX. Registers

Stack Low Register (SLR)

The Stack Low Register stores the stack low limit use to detect stack overflow. When the address of
a load or store instruction using the stack pointer (register R1) as rA is less than the Stack Low
Register, a stack overflow occurs, causing a Stack Protection Violation exception if exceptions are
enabled in MSR.

When read with the MFS instruction, the SLR is specified by setting Sa = 0x0800. Figure 2-10
illustrates the SLR register and Table 2-16 provides bit descriptions and reset values.

Note: The register is only implemented if C_USE_STACK PROTECTI ONis set to 1.

T
SLR

Figure 2-10: SLR

Table 2-16: Stack Low Register (SLR)

Bits | Name Description Reset Value

0:31 | SLR Stack Low Register 0x00000000

Stack High Register (SHR)

The Stack High Register stores the stack high limit use to detect stack underflow. When the address
of a load or store instruction using the stack pointer (register R1) as rA is greater than the Stack High
Register, a stack underflow occurs, causing a Stack Protection Violation exception if exceptions are
enabled in MSR.

When read with the MFS instruction, the SHR is specified by setting Sa = 0x0802. Figure 2-11
illustrates the SHR register and Table 2-17 provides bit descriptions and reset values.

Note: The register is only implemented if C_USE_STACK_PROTECTI ONis set to 1.

/l\
SHR

Figure 2-11: SHR

Table 2-17: Stack High Register (SHR)

Bits | Name Description Reset Value
0:31 | SHR Stack High Register OXFFFFFFFF
MicroBlaze Processor Reference Guide www.xilinx.com 35

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Process Identifier Register (PID)

The Process Identifier Register is used to uniquely identify a software process during MMU address
translation. It is controlled by the C_USE_MWU configuration option on MicroBlaze. The register is
only implemented if C_USE_MWJis greater than 1 (User Mode) and C_AREA_OPTI M ZEDis set
to 0. When accessed with the MFS and MTS instructions, the PID is specified by setting Sa =
0x1000. The register is accessible according to the memory management special registers parameter
C_MWJ_TLB_ACCESS.

PID is also used when accessing a TLB entry:

e When writing Translation Look-Aside Buffer High (TLBHI) the value of PID is stored in the
TID field of the TLB entry

e When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

Figure 2-12 illustrates the PID register and Table 2-18 provides bit descriptions and reset values.

24 31
T T
RESERVED PID
Figure 2-12: PID
Table 2-18: Process Identifier Register (PID)
Bits Name Description Reset Value
0:23 | Reserved
24:31 | PID Used to uniquely identify a software process during 0x00
MMU address translation.
Read/Write
36 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX. Registers

Zone Protection Register (ZPR)

The Zone Protection Register is used to override MMU memory protection defined in TLB entries.
It is controlled by the C_USE_MWU configuration option on MicroBlaze. The register is only
implemented if C_USE_MWUis greater than 1 (User Mode), C_AREA_OPTI M ZEDis set to 0, and
if the number of specified memory protection zones is greater than zero (C_MVIJ_ZONES > 0). The
implemented register bits depend on the number of specified memory protection zones
(C_MWMJ_ZONES). When accessed with the MFS and MTS instructions, the ZPR is specified by
setting Sa = 0x1001. The register is accessible according to the memory management special
registers parameter C_ MMUJ_TLB_ACCESS. Figure 2-13 illustrates the ZPR register and Table 2-19
provides bit descriptions and reset values.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
L[> [+ [¢ [o [» [[*© [® [0 [2 [# [*® [® [® |
T T T T T T T T T T T T T T T T

ZP0 ZP1 ZP2 ZP3 ZP4 ZP5 ZP6 ZP7 ZP8 ZP9 ZP10 ZP11 ZP12 ZP13 ZP14 ZP15

Figure 2-13: ZPR

Table 2-19: Zone Protection Register (ZPR)

Bits Name Description Reset Value
0:1 ZP0 Zone Protect 0x00000000
2:3 ZP1 User mode (MSR[UM] = 1):

00 = Override V in TLB entry. No access to the page is
30:31 | zp1s | allowed

01 = No override. Use V, WR and EX from TLB entry
10 = No override. Use V, WR and EX from TLB entry
11 = Override WR and EX in TLB entry. Access the page
as writable and executable

Privileged mode (MSR[UM] = 0):

00 = No override. Use V, WR and EX from TLB entry
01 = No override. Use V, WR and EX from TLB entry
10 = Override WR and EX in TLB entry. Access the page
as writable and executable

11 = Override WR and EX in TLB entry. Access the page
as writable and executable

Read/Write

MicroBlaze Processor Reference Guide www.xilinx.com 37
UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Translation Look-Aside Buffer Low Register (TLBLO)

The Translation Look-Aside Buffer Low Register is used to access MMU Unified Translation Look-
Aside Buffer (UTLB) entries. It is controlled by the C_USE_MWU configuration option on
MicroBlaze. The register is only implemented if C_ USE_MMUJ s greater than 1 (User Mode), and
C_AREA_OPTI M ZEDis set to 0. When accessed with the MFS and MTS instructions, the TLBLO
is specified by setting Sa = 0x1003. When reading or writing TLBLO, the UTLB entry indexed by
the TLBX register is accessed. The register is readable according to the memory management
special registers parameter C_ MMUJ_TLB_ACCESS.

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBLO entries).
Note: The UTLB is not reset by the external reset inputs: Reset , MB_Reset and Debug_Rst .

Figure 2-14 illustrates the TLBLO register and Table 2-20 provides bit descriptions and reset
values.

0

|22|23|24 |28|29|30|31|

T T T TTTT
RPN EX WR ZSEL W I M G

Figure 2-14: TLBLO

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO)

Bits | Name Description Reset Value

0:21 RPN Real Page Number or Physical Page Number 0x000000

When a TLB hit occurs, this field is read from the TLB
entry and is used to form the physical address. Depending
on the value of the SIZE field, some of the RPN bits are
not used in the physical address. Software must clear
unused bits in this field to zero.

Only defined when C_USE_MMU=3 (Virtual).

Read/Write

22 EX Executable 0

When bit is set to 1, the page contains executable code,
and instructions can be fetched from the page. When bit is
cleared to 0, instructions cannot be fetched from the page.
Attempts to fetch instructions from a page with a clear EX
bit cause an instruction-storage exception.

Read/Write

38

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Registers

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO) (Continued)

Bits | Name Description Reset Value

23 WR Writable 0

When bit is set to 1, the page is writable and store
instructions can be used to store data at addresses within
the page.

When bit is cleared to 0, the page is read-only (not
writable). Attempts to store data into a page with a clear
WR bit cause a data storage exception.

Read/Write

24:27 | ZSEL Zone Select 0x0

This field selects one of 16 zone fields (Z0-Z15) from the
zone-protection register (ZPR).

For example, if ZSEL 0x5, zone field Z5 is selected. The
selected ZPR field is used to modify the access protection
specified by the TLB entry EX and WR fields. It is also
used to prevent access to a page by overriding the TLB V
(valid) field.

Read/Write
28 w Write Through 0/1

When the parameter C_ DCACHE_USE_W\RI TEBACK is

set to 1, this bit controls caching policy. A write-through

policy is selected when set to 1, and a write-back policy is
selected otherwise.

This bit is fixed to 1, and write-through is always used,
when C_DCACHE _USE_WRI TEBACK is cleared to 0.

Read/Write

29 | Inhibit Caching 0

When bit is set to 1, accesses to the page are not cached
(caching is inhibited).

When cleared to 0, accesses to the page are cacheable.
Read/Write

30 M Memory Coherent 0

This bit is fixed to 0, because memory coherence is not
implemented on MicroBlaze.

Read Only

31 G Guarded 0

When bit is set to 1, speculative page accesses are not
allowed (memory is guarded).

When cleared to 0, speculative page accesses are allowed.

The G attribute can be used to protect memory-mapped
1/0 devices from inappropriate instruction accesses.

Read/Write

MicroBlaze Processor Reference Guide www.xilinx.com 39
UGO081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Translation Look-Aside Buffer High Register (TLBHI)

The Translation Look-Aside Buffer High Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the C_USE_MWU configuration option on
MicroBlaze. The register is only implemented if C_USE_MWU is greater than 1 (User Mode), and
C_AREA_OPTI M ZEDis set to 0. When accessed with the MFS and MTS instructions, the TLBHI
is specified by setting Sa = 0x1004. When reading or writing TLBHI, the UTLB entry indexed by
the TLBX register is accessed. The register is readable according to the memory management
special registers parameter C_ MMUJ_TLB_ACCESS.

PID is also used when accessing a TLB entry:

e When writing TLBHI the value of PID is stored in the TID field of the TLB entry
e When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBHI entries).
Note: The UTLB is not reset by the external reset inputs: Reset , MB_Reset and Debug_Rst .

Figure 2-15 illustrates the TLBHI register and Table 2-21 provides bit descriptions and reset values.

0 |22 |25|26|27|28 31|
T T T 7
TAG SIZE vV E U0 Reserved
Figure 2-15: TLBHI
Table 2-21: Translation Look-Aside Buffer High Register (TLBHI)
Bits Name Description Reset
Value
0:21 | TAG TLB-entry tag 0x000000
Is compared with the page number portion of the virtual
memory address under the control of the SIZE field.
Read/Write
22:24 | SIZE Size 000
Specifies the page size. The SIZE field controls the bit
range used in comparing the TAG field with the page
number portion of the virtual memory address. The page
sizes defined by this field are listed in Table 2-36.
Read/Write
25 \% Valid 0
When this bit is set to 1, the TLB entry is valid and
contains a page-translation entry.
When cleared to 0, the TLB entry is invalid.
Read/Write
40 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Registers

Table 2-21: Translation Look-Aside Buffer High Register (TLBHI) (Continued)

Bits

Name

Description

Reset
Value

26

Endian

When this bit is set to 1, a the page is accessed as a little
endian page if C_ENDI ANNESS is 0 (Big Endian), or as
a big endian page otherwise.

When cleared to 0, the page is accessed as a big endian
page if C_ENDI ANNESS is 0 (Big Endian), or as a little
endian page otherwise.

The E bit only affects data read or data write accesses.
Instruction accesses are not affected..

Read/Write

0

27

uo

User Defined

This bit is fixed to 0, since there are no user defined
storage attributes on MicroBlaze.

Read Only

28:31

Reserved

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

41

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Translation Look-Aside Buffer Index Register (TLBX)

The Translation Look-Aside Buffer Index Register is used as an index to the Unified Translation
Look-Aside Buffer (UTLB) when accessing the TLBLO and TLBHI registers. It is controlled by the
C_USE_MWU configuration option on MicroBlaze. The register is only implemented if

C _USE_MWJis greater than 1 (User Mode), and C_AREA OPTI M ZEDis set to 0. When accessed
with the MFS and MTS instructions, the TLBX is specified by setting Sa = 0x1002. Figure 2-16
illustrates the TLBX register and Table 2-22 provides bit descriptions and reset values.

26

31

MISS

™

Reserved

Figure 2-16: TLBX

Table 2-22: Translation Look-Aside Buffer Index Register (TLBX)

INDEX

Bits

Name

Description

Reset Value

0

MISS

TLB Miss

This bit is cleared to 0 when the TLBSX register is
written with a virtual address, and the virtual address is
found in a TLB entry.

The bit is set to 1 if the virtual address is not found. It is
also cleared when the TLBX register itself is written.

Read Only

Can be read if the memory management special registers
parameter C MMUJ _TLB_ACCESS > 0 (M NI MAL) .

0

1:25

Reserved

26:31

INDEX

TLB Index

This field is used to index the Translation Look-Aside
Buffer entry accessed by the TLBLO and TLBHI
registers. The field is updated with a TLB index when the
TLBSX register is written with a virtual address, and the
virtual address is found in the corresponding TLB entry.

Read/Write

Can be read and written if the memory management
special registers parameter C MMJ_TLB_ACCESS > 0
(M NI MAL) .

000000

42

www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Registers

Translation Look-Aside Buffer Search Index Register (TLBSX)

The Translation Look-Aside Buffer Search Index Register is used to search for a virtual page
number in the Unified Translation Look-Aside Buffer (UTLB). It is controlled by the C_USE_MMUJ
configuration option on MicroBlaze. The register is only implemented if C_USE_MWUJ is greater
than 1 (User Mode), and C_AREA_OPTI M ZED s set to 0. When written with the MTS instruction,
the TLBSX is specified by setting Sa = 0x1005. Figure 2-17 illustrates the TLBSX register and
Table 2-23 provides bit descriptions and reset values.

22 31

T T

VPN Reserved
Figure 2-17: TLBSX

Table 2-23: Translation Look-Aside Buffer Index Search Register (TLBSX)

Bits Name Description Reset Value

0:21 | VPN Virtual Page Number

This field represents the page number portion of the
virtual memory address. It is compared with the page
number portion of the virtual memory address under the
control of the SIZE field, in each of the Translation Look-
Aside Buffer entries that have the V bit set to 1.

If the virtual page number is found, the TLBX register is
written with the index of the TLB entry and the MISS bit
in TLBX is cleared to 0. If the virtual page number is not
found in any of the TLB entries, the MISS bit in the
TLBX register is set to 1.

Write Only

22:31 | Reserved

MicroBlaze Processor Reference Guide www.xilinx.com 43

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Processor Version Register (PVR)

The Processor Version Register is controlled by the C_PVR configuration option on MicroBlaze.

e When C_PVRis set to 0 (None) the processor does not implement any PVR and

MSR[PVR]=0.

e When C_PVRisset to 1 (Basic), MicroBlaze implements only the first register: PVRO, and if
set to 2 (Full), all 12 PVR registers (PVRO to PVR11) are implemented.

When read with the MFS instruction the PVR is specified by setting Sa = 0x200x, with x being the

register number between 0x0 and 0xB.

Table 2-24 through Table 2-35 provide bit descriptions and values.
Table 2-24: Processor Version Register 0 (PVRO)

Bits Name Description Value
0 CFG PVR implementation: Based on C_PVR
0 = Basic, 1 = Full
1 BS Use barrel shifter C _USE BARREL
2 DIv Use divider C USE DIV
3 MUL Use hardware multiplier C _USE_HW MUL >0 (None)
4 FPU Use FPU C_USE_FPU> 0 (None)
5 EXC Use any type of exceptions Based on C_* EXCEPTI ON
Also set if C_USE_MWU > 0 (None)
6 ICU Use instruction cache C _USE_| CACHE
7 DCU Use data cache C _USE_DCACHE
8 MMU Use MMU C USE_MWJ> 0 (None)
9 BTC Use branch target cache C USE_BRANCH TARGET_CACHE
10 ENDI Selected endianness: C_ENDI ANNESS
0 = Big endian, 1 = Little endian
11 FT Implement fault tolerant features | C_FAULT _TOLERANT
12 SPROT Use stack protection C USE STACK PROTECTI ON
13:15 | Reserved 0
16:23 | MBV MicroBlaze release version code | Release Specific
0x1 =v5.00.a 0xC =v7.20.a
0x2 =v5.00.b 0xD =v7.20.b
0x3 =v5.00.c OxE =v7.20.c
0x4 =v6.00.a OxF =v7.20.d
0x6 = v6.00.b 0x10 =v7.30.a
0x5 =v7.00.a 0x11 =v7.30.b
0x7 =v7.00.b 0x12 =v8.00.a
0x8 =v7.10.a 0x13 =v8.00.b
0x9 =v7.10.b 0x14 =v8.10.a
OxA =v7.10.c 0x15=v8.20.a
0xB =v7.10.d 0x16 =v8.20.b
24:31 | USR1 User configured value 1 C PVR_USER1

44

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Registers

Table 2-25: Processor Version Register 1 (PVR1)

Bits Name Description Value
0:31 | USR2 User configured value 2 C_PVR_USER2
Table 2-26: Processor Version Register 2 (PVR2)

Bits Name Description Value
0 DAXI Data side AXI4 in use C D AX

1 DLMB Data side LMB in use CDLM

2 IAXI Instruction side AXl4inuse |C_ | _AXI
3 ILMB Instruction side LMB inuse |C | _LMB
4 IRQEDGE Interrupt is edge triggered C | NTERRUPT_I S_EDGE
5 IRQPOS Interrupt edge is positive C EDCGE | S PCSI Tl VE

6 DPLB Data side PLB in use C D PLB

7 IPLB Instruction side PLB in use C |_PLB
8 INTERCON Use PLB interconnect C_| NTERCONNECT =1 (PLBv46)
9 STREAM Use AXI4-Stream C_STREAM | NTERCONNECT =1

interconnect

(AXI14-Stream)

10:11 | Reserved

12 FSL Use extended stream (FSL or | C_USE_EXTENDED FSL_| NSTR
AXI) instructions

13 FSLEXC Generate exception forstream | C_FSL_EXCEPTI ON
control bit (FSL or AXI)
mismatch

14 MSR Use msrset and msrclr C USE_MSR I NSTR
instructions

15 PCMP Use patterncompareand CLZ | C_USE_PCMP_| NSTR
instructions

16 AREA Select implementation to C_AREA OPTI M ZED
optimize area with lower
instruction throughput

17 BS Use barrel shifter C_USE_BARREL

18 DIV Use divider C USE DIV

19 MUL Use hardware multiplier C _USE_HW MUL >0 (None)

20 FPU Use FPU C USE_FPU> 0 (None)

21 MUL64 Use 64-bit hardware C_USE_HW MUL =2 (Mul64)

multiplier

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

45

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Processor Version Register 2 (PVR2) (Continued)

Description

Value

Use floating point conversion
and square root instructions

C_USE_FPU = 2 (Extended)

Generate exception for IPLB
error

C_| PLB_BUS_EXCEPTI ON

Generate exception for DPLB
error

C_DPLB_BUS_EXCEPTI ON

Generate exception for 0x0
illegal opcode

C_OPCODE_0x0_| LLEGAL

Generate exception for
unaligned data access

C_UNALI GNED_EXCEPTI ONS

Generate exception for any
illegal opcode

C_I LL_OPCODE_EXCEPTI ON

Generate exception for
M_AXI_I error

C_ M AXI _| _BUS_EXCEPTI ON

Generate exception for
M_AXI_D error

C_ M AXI _D BUS_EXCEPTI ON

Generate exception for
division by zero or division
overflow

C DI V_ZERO EXCEPTI ON

Generate exceptions from
FPU

C_FPU_EXCEPTI ON

Processor Version Register 3 (PVR3)

Description

Value

Use debug logic

C_DEBUG_ENABLED

Number of PC breakpoints

C_NUMBER_OF_PC_BRK

Number of read address
breakpoints

C_NUMBER_OF_RD_ADDR_BRK

Number of write address
breakpoints

C_NUMBER_OF _WR_ADDR_BRK

Number of stream links

C_FSL_LINKS

Table 2-26:

Bits Name
22 FPU2
23 IPLBEXC
24 DPLBEXC
25 OPOEXC
26 UNEXC
27 OPEXC
28 AXIIEXC
29 AXIDEXC
30 DIVEXC
31 FPUEXC

Table 2-27:

Bits Name
0 DEBUG
1:2 Reserved
3:6 PCBRK
79 Reserved
10:12 | RDADDR
13:15 | Reserved
16:18 | WRADDR
19 Reserved
20:24 | FSL
25:28 | Reserved
29:31 | BTC_SIZE

Branch Target Cache size

C_BRANCH_TARGET_CACHE_SIZE

46

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Registers

Table 2-28: Processor Version Register 4 (PVR4)

Bits Name Description Value

0 ICU Use instruction cache C USE | CACHE

1.5 ICTS Instruction cache tag size C ADDR TAG BITS

6 Reserved 1

7 ICW Allow instruction cache write C_ALLOW | CACHE_WR

8:10 | ICLL The base two logarithm of the | 0g2(C_I CACHE_LI NE_LEN)
instruction cache line length

11:15 | ICBS The base two logarithm of the | 0g2(C_CACHE BYTE_SI ZE)
instruction cache byte size

16 IAU The instruction cache is used for | C | CACHE_ALWAYS USED
all memory accesses within the
cacheable range

17 Reserved 0

18 ICI Instruction cache XCL protocol | C | CACHE | NTERFACE

19:21 | ICV Instruction cache victims 0-3: C_I| CACHE VI CTI M5=0,2,4,8

22:23 | ICS Instruction cache streams C_| CACHE_STREANMS

24 IFTL Instruction cache tag uses C | CACHE_FORCE_TAG _LUTRAM
distributed RAM

25 ICDW Instruction cache data width C | CACHE_DATA WDTH > 0

26:31 | Reserved 0

Table 2-29: Processor Version Register 5 (PVR5)

Bits Name Description Value

0 DCU Use data cache C _USE_DCACHE

1:5 DCTS Data cache tag size C _DCACHE_ADDR TAG

6 Reserved 1

7 DCW Allow data cache write C_ALLOW DCACHE VR

8:10 | DCLL The base two logarithm of the | 0g2(C_DCACHE_LI NE_LEN)
data cache line length

11:15 | DCBS The base two logarithm of the | 0g2(C_DCACHE_BYTE_SI ZE)
data cache byte size

16 DAU The data cache is used for all C _DCACHE_ALWAYS_USED
memory accesses within the
cacheable range

17 DwWB Data cache policy is write-back | C_ DCACHE _USE WRI TEBACK

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

47

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

Table 2-29: Processor Version Register 5 (PVR5) (Continued)
Bits Name Description Value
18 DCI Data cache XCL protocol C DCACHE | NTERFACE
19:21 | DCV Data cache victims 0-3: C_DCACHE VI CTI M5=0,2,4,8
22:23 | Reserved 0
24 DFTL Data cache tag uses distributed C DCACHE _FORCE _TAG _LUTRAM
RAM
25 DCDW Data cache data width C DCACHE _DATA WDTH > 0
26:31 | Reserved 0

Table 2-30: Processor Version Register 6 (PVR6)

Bits Name Description Value

0:31 | ICBA Instruction Cache Base Address C_| CACHE_BASEADDR
Table 2-31: Processor Version Register 7 (PVR7)

Bits Name Description Value

0:31 | ICHA Instruction Cache High Address C_| CACHE_HI GHADDR
Table 2-32: Processor Version Register 8 (PVR8)

Bits Name Description Value

0:31 | DCBA Data Cache Base Address C_DCACHE_BASEADDR
Table 2-33: Processor Version Register 9 (PVR9)

Bits Name Description Value

0:31 | DCHA Data Cache High Address C_DCACHE_HI GHADDR

48

www.xilinx.com

MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX. Registers
Table 2-34: Processor Version Register 10 (PVR10)
Bits Name Description Value
0:7 ARCH Target architecture: Defined by parameter
0x6 = Spartan®-3, Automotive Spartan-3 C_FAMLY
0x7 = Virtex-4, Defence Grade Virtex-4 Q
Space-Grade Virtex-4 QV
0x8 = Virtex-5, Defence Grade Virtex-5 Q
Space-Grade Virtex-5 QV
0x9 = Spartan-3E, Automotive Spartan-3E
OxA = Spartan-3A, Automotive Spartan-3A
OxB = Spartan-3AN
OxC = Spartan-3A DSP,
Automotive Spartan-3A DSP
OxD = Spartan-6, Automotive Spartan-6,
Defence Grade Spartan-6 Q
OXE = Virtex-6, Defence Grade Virtex-6 Q
OxF = Virtex-7
0x10 = Kintex™-7
0x11 = Artix™-7, Automotive Artix-7
0x12 = Zyng™
8:31 | Reserved 0
Table 2-35: Processor Version Register 11 (PVR11)
Bits Name Description Value
0:1 MMU Use MMU: C_USE_mwJ
0 = None 2 = Protection
1 = User Mode 3 = Virtual
2:4 ITLB Instruction Shadow TLB size l 0g2(C_MVU_I TLB_SI ZE)
5:7 DTLB Data Shadow TLB size | 0g2(C_MWMU_DTLB_SI ZE)
8:9 TLBACC | TLB register access: C_MMJ_TLB_ACCESS
0 = Minimal 2 = Write
1 =Read 3=Full
10:14 | ZONES Number of memory protection zones | C_MMJ_ZONES
15 PRIVINS | Privileged instructions: C_MMJ_PRI VI LEGED | NSTR
0 = Full protection
1 = Allow stream instructions
16:16 | Reserved | Reserved for future use 0
17:31 | RSTMSR | Reset value for MSR C_RESET_MSR

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

49

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Pipeline Architecture

Branches

MicroBlaze instruction execution is pipelined. For most instructions, each stage takes one clock
cycle to complete. Consequently, the number of clock cycles necessary for a specific instruction to
complete is equal to the number of pipeline stages, and one instruction is completed on every cycle.
A few instructions require multiple clock cycles in the execute stage to complete. This is achieved
by stalling the pipeline.

When executing from slower memory, instruction fetches may take multiple cycles. This additional
latency directly affects the efficiency of the pipeline. MicroBlaze implements an instruction prefetch
buffer that reduces the impact of such multi-cycle instruction memory latency. While the pipeline is
stalled by a multi-cycle instruction in the execution stage, the prefetch buffer continues to load
sequential instructions. When the pipeline resumes execution, the fetch stage can load new
instructions directly from the prefetch buffer instead of waiting for the instruction memory access to
complete. If instructions are modified during execution (e.g. with self-modifying code), the prefetch
buffer should be emptied before executing the modified instructions, to ensure that it does not
contain the old unmodified instructions. The recommended way to do this is using an MBAR
instruction, although it is also possible to use a synchronizing branch instruction, for example BRI 4.

Three Stage Pipeline

With C_AREA OPTI M ZEDset to 1, the pipeline is divided into three stages to minimize hardware
cost: Fetch, Decode, and Execute.

cyclel cycle2 cycle3 cycled cycles cycle6 cycle7

instruction 1 Fetch Decode | Execute

instruction 2 Fetch Decode | Execute | Execute | Execute

instruction 3 Fetch Decode Stall Stall Execute

Five Stage Pipeline

With C_AREA OPTI M ZED set to 0, the pipeline is divided into five stages to maximize
performance: Fetch (IF), Decode (OF), Execute (EX), Access Memory (MEM), and Writeback
(WB).

cyclel cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8 cycle9

instruction 1 IF OF EX MEM | WB
instruction 2 IF OF EX | MEM | MEM | MEM | WB
instruction 3 IF OF EX Stall Stall | MEM | WB

Normally the instructions in the fetch and decode stages (as well as prefetch buffer) are flushed
when executing a taken branch. The fetch pipeline stage is then reloaded with a new instruction from
the calculated branch address. A taken branch in MicroBlaze takes three clock cycles to execute,
two of which are required for refilling the pipeline. To reduce this latency overhead, MicroBlaze
supports branches with delay slots.

50

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Pipeline Architecture

Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage in MicroBlaze is
flushed. The instruction in the decode stage (branch delay slot) is allowed to complete. This
technique effectively reduces the branch penalty from two clock cycles to one. Branch instructions
with delay slots have a D appended to the instruction mnemonic. For example, the BNE instruction
does not execute the subsequent instruction (does not have a delay slot), whereas BNED executes
the next instruction before control is transferred to the branch location.

A delay slot must not contain the following instructions: IMM, branch, or break. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

Instructions that could cause recoverable exceptions (e.g. unaligned word or halfword load and
store) are allowed in the delay slot. If an exception is caused in a delay slot the ESR[DS] bit is set,
and the exception handler is responsible for returning the execution to the branch target (stored in
the special purpose register BTR). If the ESR[DS] bit is set, register R17 is not valid (otherwise it
contains the address following the instruction causing the exception).

Branch Target Cache

To improve branch performance, MicroBlaze provides a Branch Target Cache (BTC) coupled with
a branch prediction scheme. With the BTC enabled, a correctly predicted immediate branch or
return instruction incurs no overhead.

The BTC operates by saving the target address of each immediate branch and return instruction the
first time the instruction is encountered. The next time it is encountered, it is usually found in the
Branch Target Cache, and the Instruction Fetch Program Counter is then simply changed to the
saved target address, in case the branch should be taken. Unconditional branches and return
instructions are always taken, whereas conditional branches use branch prediction, to avoid taking a
branch that should not have been taken and vice versa.

The BTC is cleared when a memory barrier (MBAR 0) or synchronizing branch (BRI 4) is executed.
There are three cases where the branch prediction can cause a mispredict, namely:

e A conditional branch that should not have been taken, is actually taken,
e A conditional branch that should actually have been taken, is not taken,

e The target address of a return instruction is incorrect, which may occur when returning from a
function called from different places in the code.

All of these cases are detected and corrected when the branch or return instruction reaches the
execute stage, and the branch prediction bits or target address are updated in the BTC, to reflect the
actual instruction behavior. This correction incurs a penalty of two clock cycles.

The size of the BTC can be selected with C_ BRANCH TARGET_CACHE_SI ZE. The default
recommended setting uses one block RAM, and provides either 512 entries (for Virtex-5, Virtex-6,
and 7 Series) or 256 entries (for all other families). When selecting 64 entries or below, distributed
RAM is used to implement the BTC, otherwise block RAM is used.

When the BTC uses block RAM, and C_FAULT_TOLERANT is set to 1, block RAMs are protected
by parity. In case of a parity error, the branch is not predicted. To avoid accumulating errors in this
case, the BTC should be cleared periodically by a synchronizing branch.

The Branch Target Cache is available when C_USE_BRANCH_TARGET_ CACHE is setto 1 and
C_AREA_COPTI M ZEDiis set to 0.

MicroBlaze Processor Reference Guide www.xilinx.com 51
UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Memory Architecture

MicroBlaze is implemented with a Harvard memory architecture; instruction and data accesses are
done in separate address spaces. Each address space has a 32-bit range (that is, handles up to 4-GB
of instructions and data memory respectively). The instruction and data memory ranges can be made
to overlap by mapping them both to the same physical memory. The latter is useful for software
debugging.

Both instruction and data interfaces of MicroBlaze are default 32 bits wide and use big endian or
little endian, bit-reversed format, depending on the parameter C_ENDI ANNESS. MicroBlaze
supports word, halfword, and byte accesses to data memory.

Data accesses must be aligned (word accesses must be on word boundaries, halfword on halfword
boundaries), unless the processor is configured to support unaligned exceptions. All instruction
accesses must be word aligned.

MicroBlaze prefetches instructions to improve performance, using the instruction prefetch buffer

and (if enabled) instruction cache streams. To avoid attempts to prefetch instructions beyond the end
of physical memory, which may cause an instruction bus error or a processor stall, instructions must
not be located too close to the end of physical memory. The instruction prefetch buffer requires 16
bytes margin, and using instruction cache streams adds two additional cache lines (32 or 64 bytes).

MicroBlaze does not separate data accesses to 1/0 and memory (it uses memory mapped 1/O). The
processor has up to three interfaces for memory accesses:

e Local Memory Bus (LMB)
e Advanced eXtensible Interface (AXI4) or Processor Local Bus (PLB)
e Advanced eXtensible Interface (AXI4) or Xilinx CacheLink (XCL)

The LMB memory address range must not overlap with AXI4, PLB or XCL ranges.

The C_ENDI ANNESS parameter is automatically set to little endian when using AXI4, and to big
endian when using PLB, but can be overridden by the user.

MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for cache read hits,
except with C_AREA OPTI M ZED set to 1, when data side accesses and data cache read hits
require two clock cycles, and with C_FAULT_TOLERANT set to 1, when byte writes and halfword
writes to LMB normally require two clock cycles.

The data cache write latency depends on C_DCACHE _USE_WRI TEBACK. When
C_DCACHE_USE_WRI TEBACK is set to 1, the write latency normally is one cycle (more if the
cache needs to do memory accesses). When C_DCACHE_USE_WRI TEBACK s cleared to O, the
write latency normally is two cycles (more if the posted-write buffer in the memory controller is
full).

The MicroBlaze instruction and data caches can be configured to use 4 or 8 word cache lines. When
using a longer cache line, more bytes are prefetched, which generally improves performance for
software with sequential access patterns. However, for software with a more random access pattern
the performance can instead decrease for a given cache size. This is caused by a reduced cache hit
rate due to fewer available cache lines.

For details on the different memory interfaces refer to Chapter 3, “MicroBlaze Signal Interface
Description”.

52 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Privileged Instructions

Privileged Instructions

The following MicroBlaze instructions are privileged:
e CET, GETD, PUT, PUTD (except when explicitly allowed)

e WC WC

e MIS

o MSRCLR, MSRSET (except when only the C bit is affected)
e BRK

e RTI D, RTBD, RTED
e BRKI (except when jumping to physical address 0x8 or 0x18)

Attempted use of these instructions when running in user mode causes a privileged instruction
exception.

When setting the parameter C_MMJ_PRI VI LEGED | NSTRto 1, the instructions GET, GETD,
PUT, and PUTD are not considered privileged, and can be executed when running in user mode. It
is strongly discouraged to do this, unless absolutely necessary for performance reasons, since it
allows application programs to interfere with each other.

There are six ways to leave user mode and virtual mode:

Hardware generated reset (including debug reset)

Hardware exception

Non-maskable break or hardware break

Interrupt

Executing the instruction "BRALI D Re, 0x8” to perform a user vector exception

o gk~ w PP

Executing the software break instructions “BRKI ” jumping to physical address 0x8 or 0x18

In all of these cases, except hardware generated reset, the user mode and virtual mode status is saved
in the MSR UMS and VMS bits.

Application (user-mode) programs transfer control to system-service routines (privileged mode
programs) using the BRALI Dor BRKI instruction, jumping to physical address 0x8. Executing this
instruction causes a system-call exception to occur. The exception handler determines which
system-service routine to call and whether the calling application has permission to call that service.
If permission is granted, the exception handler performs the actual procedure call to the system-
service routine on behalf of the application program.

The execution environment expected by the system-service routine requires the execution of
prologue instructions to set up that environment. Those instructions usually create the block of
storage that holds procedural information (the activation record), update and initialize pointers, and
save volatile registers (registers the system-service routine uses). Prologue code can be inserted by
the linker when creating an executable module, or it can be included as stub code in either the
system-call interrupt handler or the system-library routines.

Returns from the system-service routine reverse the process described above. Epilog code is
executed to unwind and deallocate the activation record, restore pointers, and restore volatile
registers. The interrupt handler executes a return from exception instruction (RTED) to return to the
application.

MicroBlaze Processor Reference Guide www.xilinx.com 53

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Virtual-Memory Management

Programs running on MicroBlaze use effective addresses to access a flat 4 GB address space. The
processor can interpret this address space in one of two ways, depending on the translation mode:

e Inreal mode, effective addresses are used to directly access physical memory

e Invirtual mode, effective addresses are translated into physical addresses by the virtual-
memory management hardware in the processor

Virtual mode provides system software with the ability to relocate programs and data anywhere in
the physical address space. System software can move inactive programs and data out of physical
memory when space is required by active programs and data.

Relocation can make it appear to a program that more memory exists than is actually implemented
by the system. This frees the programmer from working within the limits imposed by the amount of
physical memory present in a system. Programmers do not need to know which physical-memory

addresses are assigned to other software processes and hardware devices. The addresses visible to

programs are translated into the appropriate physical addresses by the processor.

Virtual mode provides greater control over memory protection. Blocks of memory as small as 1 KB
can be individually protected from unauthorized access. Protection and relocation enable system
software to support multitasking. This capability gives the appearance of simultaneous or near-
simultaneous execution of multiple programs.

In MicroBlaze, virtual mode is implemented by the memory-management unit (MMU), available
when C_USE_MWUis set to 3 (Virtual) and C_AREA OPTI M ZED s set to 0. The MMU controls
effective-address to physical-address mapping and supports memory protection. Using these
capabilities, system software can implement demand-paged virtual memory and other memory
management schemes.

The MicroBlaze MMU implementation is based upon PowerPC™ 405. For details, see the
PowerPC Processor Reference Guide (UG011) document.

The MMU features are summarized as follows:

e Translates effective addresses into physical addresses
e Controls page-level access during address translation
e Provides additional virtual-mode protection control through the use of zones

e Provides independent control over instruction-address and data-address translation and
protection

e Supports eight page sizes: 1 kB, 4 kB, 16 kB, 64 kB, 256 kB, 1 MB, 4 MB, and 16 MB. Any
combination of page sizes can be used by system software

e Software controls the page-replacement strategy

Real Mode

The processor references memory when it fetches an instruction and when it accesses data with a
load or store instruction. Programs reference memory locations using a 32-bit effective address
calculated by the processor. When real mode is enabled, the physical address is identical to the
effective address and the processor uses it to access physical memory. After a processor reset, the
processor operates in real mode. Real mode can also be enabled by clearing the VM bit in the MSR.

Physical-memory data accesses (loads and stores) are performed in real mode using the effective
address. Real mode does not provide system software with virtual address translation, but the full
memory access-protection is available, implemented when C_USE_MMVU > 1 (User Mode) and
C_AREA_OPTI M ZED = 0. Implementation of a real-mode memory manager is more

54

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf

& XILINX.

Virtual-Memory Management

straightforward than a virtual-mode memory manager. Real mode is often an appropriate solution
for memory management in simple embedded environments, when access-protection is necessary,
but virtual address translation is not required.

Virtual Mode

In virtual mode, the processor translates an effective address into a physical address using the
process shown in Figure 2-18. Virtual mode can be enabled by setting the VM bit in the MSR..

0 24 31
| PD | Process ID Register

Effective Page Number Offset 32-Bit Effective Address

8 n+8 39

EE

| Effective Page Number Offset 40-Bit Virtual Address

Translation Look-Aside
Buffer (TLB) Look-Up

Real Page Number Offset 32-Bit Physical Address

UGO011_37_021302
Figure 2-18: Virtual-Mode Address Translation

Each address shown in Figure 2-18 contains a page-number field and an offset field. The page
number represents the portion of the address translated by the MMU. The offset represents the byte
offset into a page and is not translated by the MMU. The virtual address consists of an additional
field, called the process ID (PID), which is taken from the PID register (see Process-1D Register,
page 36). The combination of PID and effective page number (EPN) is referred to as the virtual page
number (VPN). The value n is determined by the page size, as shown in Table 2-36.

System software maintains a page-translation table that contains entries used to translate each
virtual page into a physical page. The page size defined by a page translation entry determines the
size of the page number and offset fields. For example, when a 4 kB page size is used, the page-
number field is 20 bits and the offset field is 12 bits. The VPN in this case is 28 bits.

Then the most frequently used page translations are stored in the translation look-aside buffer
(TLB). When translating a virtual address, the MMU examines the page-translation entries for a
matching VPN (PID and EPN). Rather than examining all entries in the table, only entries contained
in the processor TLB are examined. When a page-translation entry is found with a matching VPN,
the corresponding physical-page number is read from the entry and combined with the offset to form
the 32-bit physical address. This physical address is used by the processor to reference memory.

MicroBlaze Processor Reference Guide www.xilinx.com 55

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

System software can use the PID to uniquely identify software processes (tasks, subroutines,
threads) running on the processor. Independently compiled processes can operate in effective-
address regions that overlap each other. This overlap must be resolved by system software if
multitasking is supported. Assigning a PID to each process enables system software to resolve the
overlap by relocating each process into a unique region of virtual-address space. The virtual-address
space mappings enable independent translation of each process into the physical-address space.

Page-Translation Table

The page-translation table is a software-defined and software-managed data structure containing
page translations. The requirement for software-managed page translation represents an
architectural trade-off targeted at embedded-system applications. Embedded systems tend to have a
tightly controlled operating environment and a well-defined set of application software. That
environment enables virtual-memory management to be optimized for each embedded system in the
following ways:

e The page-translation table can be organized to maximize page-table search performance (also
called table walking) so that a given page-translation entry is located quickly. Most general-
purpose processors implement either an indexed page table (simple search method, large page-
table size) or a hashed page table (complex search method, small page-table size). With
software table walking, any hybrid organization can be employed that suits the particular
embedded system. Both the page-table size and access time can be optimized.

o Independent page sizes can be used for application modules, device drivers, system service
routines, and data. Independent page-size selection enables system software to more efficiently
use memory by reducing fragmentation (unused memory). For example, a large data structure
can be allocated to a 16 MB page and a small 1/0 device-driver can be allocated to a 1 KB
page.

e Page replacement can be tuned to minimize the occurrence of missing page translations. As
described in the following section, the most-frequently used page translations are stored in the
translation look-aside buffer (TLB). Software is responsible for deciding which translations are
stored in the TLB and which translations are replaced when a new translation is required. The
replacement strategy can be tuned to avoid thrashing, whereby page-translation entries are
constantly being moved in and out of the TLB. The replacement strategy can also be tuned to
prevent replacement of critical-page translations, a process sometimes referred to as page
locking.

The unified 64-entry TLB, managed by software, caches a subset of instruction and data page-
translation entries accessible by the MMU. Software is responsible for reading entries from the
page-translation table in system memory and storing them in the TLB. The following section
describes the unified TLB in more detail. Internally, the MMU also contains shadow TLBs for
instructions and data, with sizes configurable by C MMJ | TLB_SI ZEand C_ MMU_DTLB_SI ZE
respectively.

These shadow TLBs are managed entirely by the processor (transparent to software) and are used to
minimize access conflicts with the unified TLB.

Translation Look-Aside Buffer

The translation look-aside buffer (TLB) is used by the MicroBlaze MMU for address translation
when the processor is running in virtual mode, memory protection, and storage control. Each entry
within the TLB contains the information necessary to identify a virtual page (P1D and effective page
number), specify its translation into a physical page, determine the protection characteristics of the
page, and specify the storage attributes associated with the page.

56

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Virtual-Memory Management

The MicroBlaze TLB is physically implemented as three separate TLBs:

e Unified TLB—The UTLB contains 64 entries and is pseudo-associative. Instruction-page and
data-page translation can be stored in any UTLB entry. The initialization and management of
the UTLB is controlled completely by software.

e Instruction Shadow TLB—The ITLB contains instruction page-translation entries and is fully
associative. The page-translation entries stored in the ITLB represent the most-recently
accessed instruction-page translations from the UTLB. The ITLB is used to minimize
contention between instruction translation and UTLB-update operations. The initialization and
management of the ITLB is controlled completely by hardware and is transparent to software.

e Data Shadow TLB—The DTLB contains data page-translation entries and is fully associative.
The page-translation entries stored in the DTLB represent the most-recently accessed data-
page translations from the UTLB. The DTLB is used to minimize contention between data
translation and UTLB-update operations. The initialization and management of the DTLB is
controlled completely by hardware and is transparent to software.

Figure 2-19 provides the translation flow for TLB.

Generate I-side Generate D-side
Effective Address Effective Address
Translation Disabled ¢ Translation Enabled Translation Enabled Translation Disabled
(MSR[VM]=0) (MSR[VM]=1) (MSR[VM]=1) (MSR[VM]=0)

No Translation

Perform ITLB Perform DTLB (' No Translation)
Look Up Look- Up

ITLB Hit ITLB Miss DTLB MISS DTLB Hit

l/o\l(\

Extract Real Perform UTLB Extract Real
Address from ITLB Look-Up Address from DTLB

A A

UTLB Hit l UTLB Miss

Continue I-cache [Continue I-cache
Access or D-cache
Access
Extract Real I-Side TLB Miss

Address from UTLB or

‘ D-Side TLB Miss

Exception
Route Address
to DTLB

Figure 2-19: TLB Address Translation Flow

Route Address
to ITLB

MicroBlaze Processor Reference Guide www.xilinx.com 57
UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

& XILINX.

TLB Entry Format

Figure 2-20 shows the format of a TLB entry. Each TLB entry is 68 bits and is composed of two
portions: TLBLO (also referred to as the data entry), and TLBHI (also referred to as the tag entry).

TLBLO:
|o |22|23|24 |28 |29|30|31|
T 7T
RPN EX WR ZSEL W I M G
TLBHI:
0 |22 |25|26|27|28 35
T T TT 7T
TAG SIZE vV E U0 TID
Figure 2-20: TLB Entry Format

The TLB entry contents are described in Table 2-20, page 38 and Table 2-21, page 40.

The fields within a TLB entry are categorized as follows:

o Virtual-page identification (TAG, SIZE, V, TID)—These fields identify the page-translation
entry. They are compared with the virtual-page number during the translation process.

e Physical-page identification (RPN, SIZE)—These fields identify the translated page in
physical memory.

e Access control (EX, WR, ZSEL)—These fields specify the type of access allowed in the page
and are used to protect pages from improper accesses.

e Storage attributes (W, I, M, G, E, U0)—These fields specify the storage-control attributes, such
as caching policy for the data cache (write-back or write-through), whether a page is
cacheable, and how bytes are ordered (endianness).

Table 2-36 shows the relationship between the TLB-entry SI ZE field and the translated page size.

This table also shows how the page size determines which address bits are involved in a tag

comparison, which address bits are used as a page offset, and which bits in the physical page number

are used in the physical address.

Table 2-36: Page-Translation Bit Ranges by Page Size

SIZE . Physical .
Sme | LBH e | PageOffser | Page (U
Field) 9 Number
1 KB 000 TAG[0:21] - Address[0:21] | Address[22:31] | RPNJ[0:21] -
4 KB 001 TAG[0:19] - Address[0:19] | Address[20:31] | RPNJ[0:19] 20:21
16 KB 010 TAG[0:17] - Address[0:17] | Address[18:31] | RPN[0:17] 18:21
64 KB 011 TAG[0:15] - Address[0:15] | Address[16:31] | RPN[0:15] 16:21
256 KB 100 TAG[0:13] - Address[0:13] | Address[14:31] | RPN[0:13] 14:21
1 MB 101 TAG[0:11] - Address[0:11] | Address[12:31] | RPN[0:11] 12:21
4 MB 110 TAG[0:9] - Address[0:9] Address[10:31] RPNI[0:9] 10:21
16 MB 111 TAGJ[0:7] - Address[0:7] Address[8:31] RPNI0:7] 8:21
58 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX. Virtual-Memory Management

TLB Access

When the MMU translates a virtual address (the combination of PID and effective address) into a
physical address, it first examines the appropriate shadow TLB for the page translation entry. If an
entry is found, it is used to access physical memory. If an entry is not found, the MMU examines the
UTLB for the entry. A delay occurs each time the UTLB must be accessed due to a shadow TLB
miss. The miss latency ranges from 2-32 cycles. The DTLB has priority over the ITLB if both
simultaneously access the UTLB.

Figure 2-21, page 60 shows the logical process the MMU follows when examining a page-
translation entry in one of the shadow TLBs or the UTLB. All valid entries in the TLB are checked.

A TLB hit occurs when all of the following conditions are met by a TLB entry:

e Theentryisvalid

e The TAG field in the entry matches the effective address EPN under the control of the SIZE
field in the entry

e The TID field in the entry matches the PID

If any of the above conditions are not met, a TLB miss occurs. A TLB miss causes an exception,
described as follows:

A TID value of 0x00 causes the MMU to ignore the comparison between the TID and PID. Only the
TAG and EA[EPN] are compared. A TLB entry with TID=0x00 represents a process-independent
translation. Pages that are accessed globally by all processes should be assigned a TID value of
0x00. A PID value of 0x00 does not identify a process that can access any page. When PID=0x00,
a page-translation hit only occurs when TID=0x00. It is possible for software to load the TLB with
multiple entries that match an EA[EPN] and PID combination. However, this is considered a
programming error and results in undefined behavior.

When a hit occurs, the MMU reads the RPN field from the corresponding TLB entry. Some or all of
the bits in this field are used, depending on the value of the SIZE field (see Table 2-36). For
example, if the SI ZE field specifies a 256 kB page size, RPN[0:13] represents the physical page
number and is used to form the physical address. RPN[14:21] is not used, and software must clear
those bits to 0 when initializing the TLB entry. The remainder of the physical address is taken from
the page-offset portion of the EA. If the page size is 256 kB, the 32-bit physical address is formed by
concatenating RPN[0:13] with bits14:31 of the effective address.

Prior to accessing physical memory, the MMU examines the TLB-entry access-control fields. These
fields indicate whether the currently executing program is allowed to perform the requested memory
access.

If access is allowed, the MMU checks the storage-attribute fields to determine how to access the
page. The storage-attribute fields specify the caching policy for memory accesses.

TLB Access Failures

A TLB-access failure causes an exception to occur. This interrupts execution of the instruction that
caused the failure and transfers control to an interrupt handler to resolve the failure. A TLB access
can fail for two reasons:

e A matching TLB entry was not found, resulting in a TLB miss

e A matching TLB entry was found, but access to the page was prevented by either the storage
attributes or zone protection

When an interrupt occurs, the processor enters real mode by clearing MSR[VVM] to 0. In real mode,
all address translation and memory-protection checks performed by the MMU are disabled. After

MicroBlaze Processor Reference Guide www.xilinx.com 59
UGO081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

system software initializes the UTLB with page-translation entries, management of the MicroBlaze
UTLB is usually performed using interrupt handlers running in real mode.

Figure 2-21 diagrams the general process for examining a TLB entry.

TLBHI[V]=1 No I TLB-Entry Miss |

Yes
TLBHI[TID]=0x00
— Yes No l
D vt
No Match -
[TLBHI[TID] with PID]‘ TLB-Entry Miss
Match |

Compare
TLBHI[TAG] with EA[EPN] No Match I TLB-Entry Miss |

using TLBHI[SIZE]

I
Match (TLB Hit)

Check Access Not Allowed I Access Violation |

Allowed

Data Reference Aé)— Instruction Fetch
Check for
Guarded Storage

Guarded I Storage Violation |

Not Guarded
‘ J
Read TLBLO[RPN] I
[using TLBHI[SIZE]
l Generate Physical Address
from TLBLO[RPN] and Offset

Extract Offset from EA
using TLBHI[SIZE] UGOLL 41 033101

Figure 2-21: General Process for Examining a TLB Entry

The following sections describe the conditions under which exceptions occur due to TLB access
failures.

Data-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), a data-storage exception occurs when access to a
page is not permitted for any of the following reasons:
e From user mode:

¢ The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00). This
applies to load and store instructions.

¢ The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 11). This applies to store instructions.

60 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Virtual-Memory Management

e From privileged mode:

¢ The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 10 and ZPR[Zn], 11). This applies to store
instructions.

Instruction-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), an instruction-storage exception occurs when access
to a page is not permitted for any of the following reasons:

e From user mode:
+ The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).

¢ The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 11).

¢ The TLB entry specifies a guarded-storage page (TLBLO[G]=1).
e From privileged mode:

¢ The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 10 and ZPR[Zn], 11).

¢ The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

Data TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) a data TLB-miss exception occurs if a valid, matching
TLB entry was not found in the TLB (shadow and UTLB). Any load or store instruction can cause
a data TLB-miss exception.

Instruction TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) an instruction TLB-miss exception occurs if a valid,
matching TLB entry was not found in the TLB (shadow and UTLB). Any instruction fetch can cause
an instruction TLB-miss exception.

Access Protection

System software uses access protection to protect sensitive memory locations from improper access.
System software can restrict memory accesses for both user-mode and privileged-mode software.
Restrictions can be placed on reads, writes, and instruction fetches. Access protection is available
when virtual protected mode is enabled.

Access control applies to instruction fetches, data loads, and data stores. The TLB entry for a virtual
page specifies the type of access allowed to the page. The TLB entry also specifies a zone-protection
field in the zone-protection register that is used to override the access controls specified by the TLB
entry.

TLB Access-Protection Controls

Each TLB entry controls three types of access:

e Process—Processes are protected from unauthorized access by assigning a unique process ID
(PID) to each process. When system software starts a user-mode application, it loads the PID
for that application into the PID register. As the application executes, memory addresses are
translated using only TLB entries with a TID field in Translation Look-Aside Buffer High
(TLBHI) that matches the PID. This enables system software to restrict accesses for an
application to a specific area in virtual memory.

MicroBlaze Processor Reference Guide www.xilinx.com 61

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

A TLB entry with TID=0x00 represents a process-independent translation. Pages that are
accessed globally by all processes should be assigned a TID value of 0x00.

e Execution—The processor executes instructions only if they are fetched from a virtual page
marked as executable (TLBLO[EX]=1). Clearing TLBLO[EX] to 0 prevents execution of
instructions fetched from a page, instead causing an instruction-storage interrupt (ISI) to occur.
The ISI does not occur when the instruction is fetched, but instead occurs when the instruction
is executed. This prevents speculatively fetched instructions that are later discarded (rather
than executed) from causing an ISI.

The zone-protection register can override execution protection.

e Read/Write—Data is written only to virtual pages marked as writable (TLBLO[WR]=1).
Clearing TLBLO[WR] to 0 marks a page as read-only. An attempt to write to a read-only page
causes a data-storage interrupt (DSI) to occur.

The zone-protection register can override write protection.

TLB entries cannot be used to prevent programs from reading pages. In virtual mode, zone
protection is used to read-protect pages. This is done by defining a no-access-allowed zone
(ZPR[Zn] = 00) and using it to override the TLB-entry access protection. Only programs running in
user mode can be prevented from reading a page. Privileged programs always have read access to a

page.

Zone Protection

Zone protection is used to override the access protection specified in a TLB entry. Zones are an
arbitrary grouping of virtual pages with common access protection. Zones can contain any humber
of pages specifying any combination of page sizes. There is no requirement for a zone to contain
adjacent pages.

The zone-protection register (ZPR) is a 32-bit register used to specify the type of protection override
applied to each of 16 possible zones. The protection override for a zone is encoded in the ZPR as a
2-bit field. The 4-bit zone-select field in a TLB entry (TLBLO[ZSEL]) selects one of the 16 zone
fields from the ZPR (Z0-Z15). For example, zone Z5 is selected when ZSEL = 0101.

Changing a zone field in the ZPR applies a protection override across all pages in that zone. Without
the ZPR, protection changes require individual alterations to each page translation entry within the
zone.

UTLB Management

The UTLB serves as the interface between the processor MMU and memory-management software.
System software manages the UTLB to tell the MMU how to translate virtual addresses into
physical addresses. When a problem occurs due to a missing translation or an access violation, the
MMU communicates the problem to system software using the exception mechanism. System
software is responsible for providing interrupt handlers to correct these problems so that the MMU
can proceed with memory translation.

Software reads and writes UTLB entries using the MFS and MTS instructions, respectively. These
instructions use the TLBX register index (numbered 0 to 63) corresponding to one of the 64 entries
in the UTLB. The tag and data portions are read and written separately, so software must execute
two MFS or MTS instructions to completely access an entry. The UTLB is searched for a specific
translation using the TLBSX register. TLBSX locates a translation using an effective address and
loads the corresponding UTLB index into the TLBX register.

Individual UTLB entries are invalidated using the MTS instruction to clear the valid bit in the tag
portion of a TLB entry (TLBHI[V]).

62

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Virtual-Memory Management

When C_FAULT_TOLERANT is set to 1, the UTLB block RAM is protected by parity. In case of a
parity error, a TLB miss exception occurs. To avoid accumulating errors in this case, each entry in
the UTLB should be periodically invalidated.

Recording Page Access and Page Modification

Software management of virtual-memory poses several challenges:

e Inavirtual-memory environment, software and data often consume more memory than is
physically available. Some of the software and data pages must be stored outside physical
memory, such as on a hard drive, when they are not used. Ideally, the most-frequently used
pages stay in physical memory and infrequently used pages are stored elsewhere.

o When pages in physical-memory are replaced to make room for new pages, it is important to
know whether the replaced (old) pages were modified. If they were modified, they must be
saved prior to loading the replacement (new) pages. If the old pages were not modified, the
new pages can be loaded without saving the old pages.

e A limited number of page translations are kept in the UTLB. The remaining translations must
be stored in the page-translation table. When a translation is not found in the UTLB (due to a
miss), system software must decide which UTLB entry to discard so that the missing
translation can be loaded. It is desirable for system software to replace infrequently used
translations rather than frequently used translations.

Solving the above problems in an efficient manner requires keeping track of page accesses and page
modifications. MicroBlaze does not track page access and page modification in hardware. Instead,
system software can use the TLB-miss exceptions and the data-storage exception to collect this
information. As the information is collected, it can be stored in a data structure associated with the
page-translation table.

Page-access information is used to determine which pages should be kept in physical memory and
which are replaced when physical-memory space is required. System software can use the valid bit
in the TLB entry (TLBHI[V]) to monitor page accesses. This requires page translations be
initialized as not valid (TLBHI[V]=0) to indicate they have not been accessed. The first attempt to
access a page causes a TLB-miss exception, either because the UTLB entry is marked not valid or
because the page translation is not present in the UTLB. The TLB-miss handler updates the UTLB
with a valid translation (TLBHI[V]=1). The set valid bit serves as a record that the page and its
translation have been accessed. The TLB-miss handler can also record the information in a separate
data structure associated with the page-translation entry.

Page-modification information is used to indicate whether an old page can be overwritten with a
new page or the old page must first be stored to a hard disk. System software can use the write-
protection bit in the TLB entry (TLBLO[WR]) to monitor page modification. This requires page
translations be initialized as read-only (TLBLO[WR]=0) to indicate they have not been modified.
The first attempt to write data into a page causes a data-storage exception, assuming the page has
already been accessed and marked valid as described above. If software has permission to write into
the page, the data-storage handler marks the page as writable (TLBLO[WR]=1) and returns. The set
write-protection bit serves as a record that a page has been modified. The data-storage handler can
also record this information in a separate data structure associated with the page-translation entry.

Tracking page modification is useful when virtual mode is first entered and when a new process is
started.

MicroBlaze Processor Reference Guide www.xilinx.com 63
UGO081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Reset, Interrupts, Exceptions, and Break

Reset

MicroBlaze supports reset, interrupt, user exception, break, and hardware exceptions. The following
section describes the execution flow associated with each of these events.

The relative priority starting with the highest is:
Reset

Hardware Exception

Non-maskable Break

Break

Interrupt

o gk~ w PP

User Vector (Exception)

Table 2-37 defines the memory address locations of the associated vectors and the hardware
enforced register file locations for return addresses. Each vector allocates two addresses to allow full
address range branching (requires an | MMfollowed by a BRAI instruction). The address range 0x28
to Ox4F is reserved for future software support by Xilinx. Allocating these addresses for user
applications is likely to conflict with future releases of EDK support software.

Table 2-37: Vectors and Return Address Register File Location

Event Vector Address Rstiglnsfé\e;dlzrléi,s
Reset 0x00000000 - 0x00000004 -
User Vector (Exception) 0x00000008 - 0x0000000C Rx
Interrupt 0x00000010 - 0x00000014 R14
Break: Non-maskable hardware
Break: Hardware 0x00000018 - 0x0000001C R16
Break: Software
Hardware Exception 0x00000020 - 0x00000024 R17 or BTR
Reserved by Xilinx for future use 0x00000028 - 0x0000004F -

All of these events will clear the reservation bit, used together with the LWX and SWX instructions
to implement mutual exclusion, such as semaphores and spinlocks.

When a Reset , MB_Reset or Debug_Rst (1) occurs, MicroBlaze flushes the pipeline and starts
fetching instructions from the reset vector (address 0x0). Both external reset signals are active high
and should be asserted for a minimum of 16 cycles.

Equivalent Pseudocode

PC <« 0x00000000

MBR <— C_RESET_MSR (see “M croBl aze Core Configurability” in Chapter 3)
EAR <—0; ESR «-0; FSR «0

PID «-0; ZPR «0; TLBX <« 0

Reservation <0

1. Reset input controlled by the XMD debugger via MDM.

64

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Reset, Interrupts, Exceptions, and Break

Hardware Exceptions

MicroBlaze can be configured to trap the following internal error conditions: illegal instruction,
instruction and data bus error, and unaligned access. The divide exception can only be enabled if the
processor is configured with a hardware divider (C_USE_DI V=1). When configured with a
hardware floating point unit (C_USE_FPU>0), it can also trap the following floating point specific
exceptions: underflow, overflow, float division-by-zero, invalid operation, and denormalized
operand error.

When configured with a hardware Memory Management Unit, it can also trap the following
memory management specific exceptions: lllegal Instruction Exception, Data Storage Exception,
Instruction Storage Exception, Data TLB Miss Exception, and Instruction TLB Miss Exception.

A hardware exception causes MicroBlaze to flush the pipeline and branch to the hardware exception
vector (address 0x20). The execution stage instruction in the exception cycle is not executed.

The exception also updates the general purpose register R17 in the following manner:

e For the MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB
Miss Exception, Instruction TLB Miss Exception) the register R17 is loaded with the
appropriate program counter value to re-execute the instruction causing the exception upon
return. The value is adjusted to return to a preceding | MMinstruction, if any. If the exception is
caused by an instruction in a branch delay slot, the value is adjusted to return to the branch
instruction, including adjustment for a preceding | MMinstruction, if any.

o For all other exceptions the register R17 is loaded with the program counter value of the
subsequent instruction, unless the exception is caused by an instruction in a branch delay slot.
If the exception is caused by an instruction in a branch delay slot, the ESR[DS] bit is set. In
this case the exception handler should resume execution from the branch target address stored
in BTR.

The EE and EIP bits in MSR are automatically reverted when executing the RTED instruction.

The VM and UM bits in MSR are automatically reverted from VMS and UMS when executing the
RTED, RTBD, and RTI D instructions.

Exception Priority

When two or more exceptions occur simultaneously, they are handled in the following order, from
the highest priority to the lowest:

e Instruction Bus Exception

e Instruction TLB Miss Exception
e Instruction Storage Exception

o lllegal Opcode Exception

e Privileged Instruction Exception or Stack Protection Violation Exception
e Data TLB Miss Exception

o Data Storage Exception

e Unaligned Exception

e Data Bus Exception

e Divide Exception

e FPU Exception

e Stream Exception

MicroBlaze Processor Reference Guide www.xilinx.com 65
UGO081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Exception Causes

Stream Exception

The stream exception (FSL or AXI) is caused by executing a get or get d instruction with the
‘e’ bit set to “1” when there is a control bit mismatch.

Instruction Bus Exception
The instruction bus exception is caused by errors when reading data from memory.

¢ The instruction peripheral AXI14 interface (M_AXI_IP) exception is caused by an error
response on M_AXI _| P_RRESP.

¢ Theinstruction cache AXI4 interface (M_AXI_IC) is caused by an error response on
M_AXI _| C_RRESP. The exception can only occur when C_| CACHE_ALWAYS_USEDis
set to 1 and the cache is turned off. In all other cases the response is ignored.

+ The instruction Processor Local Bus (PLB) exception is caused by an active error signal
from the slave (I PLB_NMRAEr r) or timeout signal from the arbiter (I PLB_MTi neout).

¢ The instructions side local memory (ILMB) can only cause instruction bus exception
when C_FAULT_TOLERANT is set to 1, and either an uncorrectable error occurs in the
LMB memory, as indicated by the | UE signal, or C ECC_USE_CE_EXCEPTI ONis set
to 1 and a correctable error occurs in the LMB memory, as indicated by the | CE signal.

¢ The CacheLink (IXCL) interfaces cannot cause instruction bus exceptions.
Illegal Opcode Exception

The illegal opcode exception is caused by an instruction with an invalid major opcode (bits 0
through 5 of instruction). Bits 6 through 31 of the instruction are not checked. Optional
processor instructions are detected as illegal if not enabled. If the optional feature
C_OPCODE_0x0_I LLEGAL is enabled, an illegal opcode exception is also caused if the
instruction is equal to 0x00000000.

Data Bus Exception
The data bus exception is caused by errors when reading data from memory or writing data to
memory.
¢ The data peripheral AXI14 interface (M_AXI_DP) exception is caused by an error
response on M_AXI _DP_RRESP or M_AXI _DP_BRESP.
¢ The data cache AXI4 interface (M_AXI_DC) exception is caused by:
- Anerror response on M_AXI _DC _RRESP or M_AXI _DP_BRESP,
- OKAY response on M_AXI _DC RRESP in case of an exclusive access using LW,

The exception can only occur when C_DCACHE _ALWAYS_USEDis set to 1 and the cache
is turned off, or when an exclusive access using LVWK or SWK is performed. In all other cases
the response is ignored.

+ The data Processor Local Bus exception is caused by an active error signal from the slave
(DPLB_NMRAET r or DPLB_MW Er r) or timeout signal from the arbiter
(DPLB_MTi meout).

¢ The data side local memory (DLMB) can only cause instruction bus exception when
C _FAULT_TOLERANT is setto 1, and either an uncorrectable error occurs in the LMB
memory, as indicated by the DUE signal, or C ECC_USE_CE_EXCEPTI ONissetto 1
and a correctable error occurs in the LMB memory, as indicated by the DCE signal. An
error can occur for all read accesses, and for byte and halfword write accesses.

¢ The CacheLink (DXCL) interfaces cannot cause data bus exceptions.

66

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Reset, Interrupts, Exceptions, and Break

Unaligned Exception

The unaligned exception is caused by a word access where the address to the data bus has bits
30 or 31 set, or a half-word access with bit 31 set.

Divide Exception

The divide exception is caused by an integer division (idiv or idivu) where the divisor is zero,
or by a signed integer division (idiv) where overflow occurs (-2147483648 / -1).

FPU Exception

An FPU exception is caused by an underflow, overflow, divide-by-zero, illegal operation, or
denormalized operand occurring with a floating point instruction.

+ Underflow occurs when the result is denormalized.
¢ Overflow occurs when the result is not-a-number (NaN).

+ The divide-by-zero FPU exception is caused by the rA operand to fdiv being zero when rB
is not infinite.

+ lllegal operation is caused by a signaling NaN operand or by illegal infinite or zero
operand combinations.

Privileged Instruction Exception

The Privileged Instruction exception is caused by an attempt to execute a privileged instruction
in User Mode.

Stack Protection Violation Exception

A Stack Protection Violation exception is caused by executing a load or store instruction using
the stack pointer (register R1) as rA with an address outside the stack boundaries defined by the
special Stack Low and Stack High registers, causing a stack overflow or a stack underflow.

Data Storage Exception

The Data Storage exception is caused by an attempt to access data in memory that results in a
memory-protection violation.

Instruction Storage Exception

The Instruction Storage exception is caused by an attempt to access instructions in memory that
results in a memory-protection violation.

Data TLB Miss Exception

The Data TLB Miss exception is caused by an attempt to access data in memory, when a valid
Translation Look-Aside Buffer entry is not present, and virtual protected mode is enabled.

Instruction TLB Miss Exception

The Instruction TLB Miss exception is caused by an attempt to access instructions in memory,
when a valid Translation Look-Aside Buffer entry is not present, and virtual protected mode is
enabled.

Should an Instruction Bus Exception, lllegal Opcode Exception or Data Bus Exception occur when
C FAULT_TOLERANT issetto 1, and an exception is in progress (i.e. MSR[EIP] set and MSR[EE]
cleared), the pipeline is halted, and the external signal MB_Er r or is set.

MicroBlaze Processor Reference Guide www.xilinx.com 67

UG081 (v13.4)

http://www.xilinx.com

Chapter 2:

MicroBlaze Architecture & XILINX.

Equivalent Pseudocode

Breaks

ESR[DS] <« exception in delay slot
if ESR[DS] then
BTR <« branch target PC
if MWJ exception then
if branch preceded by | MMthen
rlv «<PC- 8
el se
rl7 < PC- 4
el se
rl7 <«invalid val ue
else if MMUJ exception then
if instruction preceded by I MM then
rl7 < PC- 4
el se
rl7 < PC
el se
rl7 < PC + 4
PC <- 0x00000020
MSR[EE] <« 0, MSREIP] <« 1
MBR[UMS] <— MSRIUM, MSRIUM <« 0, MSRIVM5] <« MSR[VM, MSR[VM <« O
ESR[EC] <« exception specific val ue
ESR[ESS] <— exception specific val ue
EAR <« exception specific val ue
FSR < exception specific value
Reservation <0

There are two kinds of breaks:

e Hardware (external) breaks
e Software (internal) breaks

Hardware Breaks

Hardware breaks are performed by asserting the external break signal (that is, the Ext _BRK and
Ext _NM BRK input ports). On a break, the instruction in the execution stage completes while the
instruction in the decode stage is replaced by a branch to the break vector (address 0x18). The break
return address (the PC associated with the instruction in the decode stage at the time of the break) is
automatically loaded into general purpose register R16. MicroBlaze also sets the Break In Progress
(Bl P) flag in the Machine Status Register (MSR).

A normal hardware break (that is, the Ext_ BRK input port) is only handled when MSR[BIP] and
MSR[EIP] are set to O (that is, there is no break or exception in progress). The Break In Progress flag
disables interrupts. A non-maskable break (that is, the Ext _NM_BRK input port) is always handled
immediately.

The BIP bit in the MSR is automatically cleared when executing the RTBD instruction.

The Ext _BRK signal must be kept asserted until the break has occurred, and deasserted before the
RTBD instruction is executed. The Ext _NM _BRK signal must only be asserted one clock cycle.

Software Breaks

To perform a software break, use the br k and br ki instructions. Refer to Chapter 5, “MicroBlaze
Instruction Set Architecture” for detailed information on software breaks.

68

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Reset, Interrupts, Exceptions, and Break

Latency

The time it takes MicroBlaze to enter a break service routine from the time the break occurs depends
on the instruction currently in the execution stage and the latency to the memory storing the break
vector.

Equivalent Pseudocode

Interrupt

rle < PC

PC <« 0x00000018

MSR[BI P] « 1

MSR[UMS] <« MSRIUM, MSRIUM <« 0, MSRIVM5] < MSRIWM, MSRIVM <« O
Reservation <« 0

MicroBlaze supports one external interrupt source (connected to the I nt er r upt input port). The
processor only reacts to interrupts if the Interrupt Enable (IE) bit in the Machine Status Register
(MSR) is set to 1. On an interrupt, the instruction in the execution stage completes while the
instruction in the decode stage is replaced by a branch to the interrupt vector (address 0x10). The
interrupt return address (the PC associated with the instruction in the decode stage at the time of the
interrupt) is automatically loaded into general purpose register R14. In addition, the processor also
disables future interrupts by clearing the IE bit in the MSR. The IE bit is automatically set again
when executing the RTID instruction.

Interrupts are ignored by the processor if either of the break in progress (Bl P) or exception in
progress (El P) bits in the MSR are set to 1.

By using the parameter C_| NTERRUPT _| S_EDCGCE, the external interrupt can either be set to level-
sensitive or edge-sensitive:

e When using level-sensitive interrupts, the | nt er r upt input must remain set until MicroBlaze
has taken the interrupt, and jumped to the interrupt vector. Software must clear the interrupt
before returning from the interrupt handler. If not, the interrupt is taken again, as soon as
interrupts are enabled when returning from the interrupt handler.

e When using edge-sensitive interrupts, MicroBlaze detects and latches the | nt er r upt input
edge, which means that the input only needs to be asserted one clock cycle. The interrupt input
can remain asserted, but must be deasserted at least one clock cycle before a new interrupt can
be detected. The latching of an edge sensitive interrupt is independent of the IE bit in MSR.
Should an interrupt occur while the IE bit is 0, it will immediately be serviced when the IE bit
issetto 1.

Latency

The time it takes MicroBlaze to enter an Interrupt Service Routine (ISR) from the time an interrupt
occurs, depends on the configuration of the processor and the latency of the memory controller
storing the interrupt vectors. If MicroBlaze is configured to have a hardware divider, the largest
latency happens when an interrupt occurs during the execution of a division instruction.

Equivalent Pseudocode

rl4 < PC

PC <« 0x00000010

MSR[I E] <« 0

MSR[UMS] <« MSRIUM, MSRIUM <« 0, MSRIVM5] <« MSRIVWM, MSRIVM <« O
Reservation <0

MicroBlaze Processor Reference Guide www.xilinx.com 69

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

User Vector (Exception)

The user exception vector is located at address 0x8. A user exception is caused by inserting a
‘BRALI D Rx, 0x8” instruction in the software flow. Although Rx could be any general purpose
register, Xilinx recommends using R15 for storing the user exception return address, and to use the
RTSD instruction to return from the user exception handler.

Pseudocode

rx < PC
PC <« 0x00000008

MSR[UMS] « MSRIUM, MSRIUM <« 0, MSR[VM5] < MSRIWM, MSRIVM <« O
Reservation <0

70

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

8 XILINX. Instruction Cache

Instruction Cache

Overview

MicroBlaze can be used with an optional instruction cache for improved performance when
executing code that resides outside the LMB address range.

The instruction cache has the following features:

e Direct mapped (1-way associative)

e User selectable cacheable memory address range

e Configurable cache and tag size

e Caching over AXI4 interface (M_AXI_IC) or CacheLink (XCL) interface

e Option to use 4 or 8 word cache-line

e Cache on and off controlled using a bit in the MSR

e Optional WIC instruction to invalidate instruction cache lines

e Optional stream buffers to improve performance by speculatively prefetching instructions
e Optional victim cache to improve performance by saving evicted cache lines

e Optional parity protection that invalidates cache lines if a Block RAM bit error is detected
e Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Instruction Cache Functionality

When the instruction cache is used, the memory address space is split into two segments: a
cacheable segment and a non-cacheable segment. The cacheable segment is determined by two
parameters: C_| CACHE_BASEADDR and C_| CACHE_HI GHADDR. All addresses within this
range correspond to the cacheable address segment. All other addresses are non-cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified by
C_| CACHE_BASEADDR and C_| CACHE_HI GHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of C_| CACHE_BASEADDR must be
zero.

The cacheable instruction address consists of two parts: the cache address, and the tag address. The
MicroBlaze instruction cache can be configured from 64 bytes to 64 kB. This corresponds to a cache
address of between 6 and 16 bits. The tag address together with the cache address should match the
full address of cacheable memory. When selecting cache sizes below 2 kB, distributed RAM is used
to implement the Tag RAM and Instruction RAM. Distributed RAM is always used to implement
the Tag RAM, when setting the parameter C_| CACHE_FORCE_TAG_LUTRAM to 1. This
parameter is only available with cache sizes 8 kB or 16 kB and less, for 4 or 8 word cache-lines,
respectively.

For example: in a MicroBlaze configured with C_| CACHE_BASEADDR= 0x00300000,

C_| CACHE_HI GHADDR=0x0030f f f f , C_CACHE_BYTE_SI ZE=4096,

C | CACHE_LI NE_LEN=8, and C_| CACHE_FORCE_TAG_LUTRAM=0; the cacheable memory
of 64 kB uses 16 bits of byte address, and the 4 kB cache uses 12 bits of byte address, thus the
required address tag width is: 16-12=4 bits. The total number of block RAM primitives required in
this configuration is: 2 RAMB16 for storing the 1024 instruction words, and 1 RAMB16 for 128
cache line entries, each consisting of: 4 bits of tag, 8 word-valid bits, 1 line-valid bit. In total 3
RAMB16 primitives.

Figure 2-22, page 72 shows the organization of Instruction Cache.

MicroBlaze Processor Reference Guide www.xilinx.com 71
UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Instruction Address Bits

| Tag Address Cache Address [--]

Line Addr Tag | 1% _ Cache_Hit
—————»| RAM . . -
Valid (word and line)

Word Addr Instruction Cache instruction data
— ¥ RAM >

Figure 2-22: Instruction Cache Organization

Instruction Cache Operation

For every instruction fetched, the instruction cache detects if the instruction address belongs to the
cacheable segment. If the address is non-cacheable, the cache controller ignores the instruction and
lets the M_AXI_IP, PLB or LMB complete the request. If the address is cacheable, a lookup is
performed on the tag memory to check if the requested address is currently cached. The lookup is
successful if: the word and line valid bits are set, and the tag address matches the instruction address
tag segment. On a cache miss, the cache controller requests the new instruction over the instruction
AXIl4 interface (M_AXI_IC) or instruction CacheLink (IXCL) interface, and waits for the memory
controller to return the associated cache line.

With the AX14 interface, C_| CACHE _DATA W DTHdetermines the bus data width, either 32 bits,
an entire cache line (128 bits or 256 bits), or 512 bits.

When C_FAULT_TOLERANT is set to 1, a cache miss also occurs if a parity error is detected in a
tag or instruction Block RAM.

Stream Buffers

When stream buffers are enabled, by setting the parameter C_| CACHE _STREAMS to 1, the cache
will speculatively fetch cache lines in advance in sequence following the last requested address,
until the stream buffer is full. The stream buffer can hold up to two cache lines. Should the processor
subsequently request instructions from a cache line prefetched by the stream buffer, which occurs in
linear code, they are immediately available.

The stream buffer often improves performance, since the processor generally has to spend less time
waiting for instructions to be fetched from memory.

With the AXI4 interface, C_| CACHE_DATA W DTH determines the amount of data transferred
from the stream buffer each clock cycle, either 32 bits or an entire cache line.

To be able to use instruction cache stream buffers, area optimization must not be enabled.

72 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Data Cache

Victim Cache

The victim cache is enabled by setting the parameter C_| CACHE_VI CTI M5to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a cache line is
evicted from the cache, it is saved in the victim cache. By saving the most recent lines they can be
fetched much faster, should the processor request them, thereby improving performance. If the
victim cache is not used, all evicted cache lines must be read from memory again when they are
needed.

With the AXI14 interface, C_| CACHE_DATA_ W DTH determines the amount of data transferred
from/to the victim cache each clock cycle, either 32 bits or an entire cache line.

Note that to be able to use the victim cache, area optimization must not be enabled.

Instruction Cache Software Support

MSR Bit

The ICE bit in the MSR provides software control to enable and disable caches.

The contents of the cache are preserved by default when the cache is disabled. You can invalidate
cache lines using the WIC instruction or using the hardware debug logic of MicroBlaze.

WIC Instruction

The optional WIC instruction (C_ALLOW | CACHE_WR=1) is used to invalidate cache lines in the
instruction cache from an application. For a detailed description, refer to Chapter 5, “MicroBlaze
Instruction Set Architecture”.

The WIC instruction can also be used together with parity protection to periodically invalidate
entries the cache, to avoid accumulating errors.

Data Cache
Overview
MicroBlaze can be used with an optional data cache for improved performance. The cached memory
range must not include addresses in the LMB address range. The data cache has the following
features:
e Direct mapped (1-way associative)
e Write-through or Write-back
e User selectable cacheable memory address range
e Configurable cache size and tag size
e Caching over AXI4 interface (M_AXI_DC) or CacheLink (XCL) interface
e Option to use 4 or 8 word cache-lines
e Cache on and off controlled using a bit in the MSR
e Optional WDC instruction to invalidate or flush data cache lines
e Optional victim cache with write-back to improve performance by saving evicted cache lines
e Optional parity protection for write-through cache that invalidates cache lines if a Block RAM
bit error is detected
e Optional data width selection to either use 32 bits, an entire cache line, or 512 bits
MicroBlaze Processor Reference Guide www.xilinx.com 73

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

General Data Cache Functionality

When the data cache is used, the memory address space is split into two segments: a cacheable
segment and a non-cacheable segment. The cacheable area is determined by two parameters:
C_DCACHE_BASEADDRand C_DCACHE_HI GHADDR. All addresses within this range correspond
to the cacheable address space. All other addresses are non-cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified by
C_DCACHE_BASEADDR and C_DCACHE_HI GHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of C_DCACHE_BASEADDR must be
zZero.

Figure 2-23 shows the Data Cache Organization.

Data Address Bits
0 3031
| Tag Address Cache Word Address | -] -]

Addr Tag |Tad

> RAM . Cache_Hit
Valid
Load Instruction
Addr Data Cache_data
> RAM >

Figure 2-23: Data Cache Organization

The cacheable data address consists of two parts: the cache address, and the tag address. The
MicroBlaze data cache can be configured from 64 bytes to 64 kB. This corresponds to a cache
address of between 6 and 16 bits. The tag address together with the cache address should match the
full address of cacheable memory. When selecting cache sizes below 2 kB, distributed RAM is used
to implement the Tag RAM and Data RAM, except that block RAM is always used for the Data
RAM when C_AREA_OPTI M ZED s set and C_DCACHE_USE_WRI TEBACK is not set.
Distributed RAM is always used to implement the Tag RAM, when setting the parameter

C _DCACHE_FORCE_TAG _LUTRAM to 1. This parameter is only available with cache sizes 8 kB
or 16 kB and less, for 4 or 8 word cache-lines, respectively.

For example, in a MicroBlaze configured with C_DCACHE_BASEADDR=0x00400000,
C_DCACHE_HI GHADDR=0x00403f f f, C_DCACHE_BYTE_SI ZE=2048,

C DCACHE LI NE_LEN=4, and C_ DCACHE FORCE_TAG LUTRAM=O0; the cacheable memory
of 16 kB uses 14 bits of byte address, and the 2 kB cache uses 11 bits of byte address, thus the
required address tag width is 14-11=3 bits. The total number of block RAM primitives required in
this configuration is 1 RAMB16 for storing the 512 data words, and 1 RAMB16 for 128 cache line
entries, each consisting of 3 bits of tag, 4 word-valid bits, 1 line-valid bit. In total, 2 RAMB16
primitives.

74

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Data Cache

Data Cache Operation

The caching policy used by the MicroBlaze data cache, write-back or write-through, is determined
by the parameter C_ DCACHE USE_WRI TEBACK. When this parameter is set, a write-back
protocol is implemented, otherwise write-through is implemented. However, when configured with
an MMU (C_USE_MWMU> 1, C_AREA _OPTI M ZED=0, C_DCACHE_USE_WRI TEBACK = 1),
the caching policy in virtual mode is determined by the W storage attribute in the TLB entry,
whereas write-back is used in real mode.

With the write-back protocol, a store to an address within the cacheable range always updates the
cached data. If the target address word is not in the cache (that is, the access is a cache-miss), and the
location in the cache contains data that has not yet been written to memory (the cache location is
dirty), the old data is written over the data AXI14 interface (M_AXI_DC) or the data CacheLink
(DXCL) to external memory before updating the cache with the new data. If an entire cache line
needs to be written, a burst cache line write is used, otherwise single word writes are used. For byte
or halfword stores, in case of a cache miss, the address is first requested over the data AXI4 interface
or the data CacheL.ink, while a word store only updates the cache.

With the write-through protocol, a store to an address within the cacheable range generates an
equivalent byte, halfword, or word write over the data AXI4 interface or the data CacheLink to
external memory. The write also updates the cached data if the target address word is in the cache
(that is, the write is a cache hit). A write cache-miss does not load the associated cache line into the
cache.

Provided that the cache is enabled a load from an address within the cacheable range triggers a check
to determine if the requested data is currently cached. If it is (that is, on a cache hit) the requested
data is retrieved from the cache. If not (that is, on a cache miss) the address is requested over the data
AXIl4 interface or data CacheLink, and the processor pipeline stalls until the cache line associated to
the requested address is returned from the external memory controller.

With the AX14 interface, C_ DCACHE DATA W DTHdetermines the bus data width, either 32 bits,
an entire cache line (128 bits or 256 bits), or 512 bits.

When C_FAULT_TOLERANT is set to 1 and write-through protocol is used, a cache miss also
occurs if a parity error is detected in the tag or data Block RAM.

Victim Cache

The victim cache is enabled by setting the parameter C_DCACHE_VI CTI M5to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a complete cache
line is evicted from the cache, it is saved in the victim cache. By saving the most recent lines they
can be fetched much faster, should the processor request them, thereby improving performance. If
the victim cache is not used, all evicted cache lines must be read from memory again when they are
needed.

With the AXI4 interface, C_ DCACHE_DATA W DTH determines the amount of data transferred
from/to the victim cache each clock cycle, either 32 bits or an entire cache line.

Note that to be able to use the victim cache, write-back must be enabled and area optimization must
not be enabled.

Data Cache Software Support

MSR Bit

The DCE bit in the MSR controls whether or not the cache is enabled. When disabling caches the
user must ensure that all the prior writes within the cacheable range have been completed in external

MicroBlaze Processor Reference Guide www.xilinx.com 75
UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

memory before reading back over M_AXI_DP or PLB. This can be done by writing to a semaphore
immediately before turning off caches, and then in a loop poll until it has been written.

The contents of the cache are preserved when the cache is disabled.

WDC Instruction

The optional WDC instruction (C_ALLOW DCACHE_WR=1) is used to invalidate or flush cache
lines in the data cache from an application. For a detailed description, please refer to Chapter 5,
“MicroBlaze Instruction Set Architecture”.

The WDC instruction can also be used together with parity protection to periodically invalidate
entries the cache, to avoid accumulating errors.

76 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Floating Point Unit (FPU)

Floating Point Unit (FPU)

Overview

The MicroBlaze floating point unit is based on the IEEE 754-1985 standard:

e Uses IEEE 754 single precision floating point format, including definitions for infinity, not-a-
number (NaN), and zero

e Supports addition, subtraction, multiplication, division, comparison, conversion and square
root instructions

e Implements round-to-nearest mode
e Generates sticky status bits for: underflow, overflow, divide-by-zero and invalid operation
For improved performance, the following non-standard simplifications are made:

e Denormalized(?) operands are not supported. A hardware floating point operation on a
denormalized number returns a quiet NaN and sets the sticky denormalized operand error bit in
FSR; see "Floating Point Status Register (FSR)" on page 34

e Adenormalized result is stored as a signed 0 with the underflow bit set in FSR. This method is
commonly referred to as Flush-to-Zero (FTZ)

e Anoperation on a quiet NaN returns the fixed NaN: OxFFC00000, rather than one of the NaN
operands

e Overflow as a result of a floating point operation always returns signed oo

Format

An IEEE 754 single precision floating point number is composed of the following three fields:
1. 1-bitsign
2. 8-bit biased exponent
3. 23-bit fraction (a.k.a. mantissa or significand)
The fields are stored in a 32 bit word as defined in Figure 2-24:

| 0 ‘ 1 ‘ 9 31

T T T
sign exponent fraction
Figure 2-24: |EEE 754 Single Precision Format
The value of a floating point number v in MicroBlaze has the following interpretation:
1. If exponent = 255 and fraction <> 0, then v= NaN, regardless of the sign bit
2. If exponent = 255 and fraction = 0, then v= (-1)819" * oo
3. If 0 <exponent < 255, then v = (-1)sign * 2(exponent-127) x (1 fraction)
4. If exponent = 0 and fraction <> 0, then v = (-1)sign * 2-126 * (fraction)
5. If exponent = 0 and fraction = 0, then v = (-1)sign * 0
1. Numbers that are so close to 0, that they cannot be represented with full precision, that is, any number n that falls in the
following ranges: (1.17549*1038>n>0), or (0>n>-1.17549 * 10-38)
MicroBlaze Processor Reference Guide www.xilinx.com 77

UG081 (v13.4)

http://www.xilinx.com
http://en.wikipedia.org/wiki/IEEE_754-1985

Chapter 2: MicroBlaze Architecture & XILINX.

Rounding

For practical purposes only 3 and 5 are useful, while the others all represent either an error or
numbers that can no longer be represented with full precision in a 32 bit format.

The MicroBlaze FPU only implements the default rounding mode, “Round-to-nearest”, specified in
IEEE 754. By definition, the result of any floating point operation should return the nearest single
precision value to the infinitely precise result. If the two nearest representable values are equally
near, then the one with its least significant bit zero is returned.

Operations

All MicroBlaze FPU operations use the processors general purpose registers rather than a dedicated
floating point register file, see “General Purpose Registers”.

Arithmetic

The FPU implements the following floating point operations:

e addition, fadd

e subtraction, fsub

e multiplication, fmul

o division, fdiv

e square root, fsgrt (available if C_ USE_FPU = 2, EXTENDED)

Comparison

The FPU implements the following floating point comparisons:

e compare less-than, fcmp.It

e compare equal, fcmp.eq

e compare less-or-equal, fcmp.le

e compare greater-than, fcmp.gt

e compare not-equal, fcmp.ne

e compare greater-or-equal, fcmp.ge

e compare unordered, fcmp.un (used for NaN)

Conversion

The FPU implements the following conversions (available if C USE_FPU = 2, EXTENDED):

e convert from signed integer to floating point, flt
o convert from floating point to signed integer, fint

Exceptions

The floating point unit uses the regular hardware exception mechanism in MicroBlaze. When
enabled, exceptions are thrown for all the IEEE standard conditions: underflow, overflow, divide-
by-zero, and illegal operation, as well as for the MicroBlaze specific exception: denormalized
operand error.

A floating point exception inhibits the write to the destination register (Rd). This allows a floating
point exception handler to operate on the uncorrupted register file.

78

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Floating Point Unit (FPU)

Software Support

The EDK compiler system, based on GCC, provides support for the Floating Point Unit compliant
with the MicroBlaze API. Compiler flags are automatically added to the GCC command line based
on the type of FPU present in the system, when using XPS or SDK.

All double-precision operations are emulated in software. Be aware that the xil_printf() function
does not support floating-point output. The standard C library printf() and related functions do
support floating-point output, but will increase the program code size.

Libraries and Binary Compatibility

The EDK compiler system only includes software floating point C runtime libraries. To take
advantage of the hardware FPU, the libraries must be recompiled with the appropriate compiler
switches.

For all cases where separate compilation is used, it is very important that you ensure the consistency
of FPU compiler flags throughout the build.

Operator Latencies

The latencies of the various operations supported by the FPU are listed in Chapter 5, “MicroBlaze
Instruction Set Architecture.” The FPU instructions are not pipelined, so only one operation can be
ongoing at any time.

C Language Programming

To gain maximum benefit from the FPU without low-level assembly-language programming, it is
important to consider how the C compiler will interpret your source code. Very often the same
algorithm can be expressed in many different ways, and some are more efficient than others.

Immediate Constants

Floating-point constants in C are double-precision by default. When using a single-precision FPU,
careless coding may result in double-precision software emulation routines being used instead of the
native single-precision instructions. To avoid this, explicitly specify (by cast or suffix) that
immediate constants in your arithmetic expressions are single-precision values.

For example:

float x = 0.0;

x += (float)1.0; /* float addition */
x += 1. 0F; /* alternative to above */
x += 1.0; /* warning - uses double addition! */

Note that the GNU C compiler can be instructed to treat all floating-point constants as single-
precision (contrary to the ANSI C standard) by supplying the compiler flag -fsingle-precision-
constants.

Avoid unnecessary casting

While conversions between floating-point and integer formats are supported in hardware by the
FPU, when C_USE_FPUis set to 2 (Extended), it is still best to avoid them when possible.

The following “bad” example calculates the sum of squares of the integers from 1 to 10 using
floating-point representation;

MicroBlaze Processor Reference Guide www.xilinx.com 79

UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

float sum t;

int i;

sum = 0. 0f;

for (i =1; i <= 10; i++) {
t = (float)i;

sum+=1t * t;

}

The above code requires a cast from an integer to a float on each loop iteration. This can be rewritten
as:
float sum t;
int i;
t = sum = 0. 0f;
for(i =1; i <= 10; i++) {
t += 1.0f;
sum+=1t * t;

}

Note that the compiler is not at liberty to perform this optimization in general, as the two code
fragments above may give different results in some cases (for example, very large t).

Square root runtime library function

The standard C runtime math library functions operate using double-precision arithmetic. When
using a single-precision FPU, calls to the square root functions (sqrt()) result in inefficient emulation
routines being used instead of FPU instructions:

#i ncl ude <mat h. h>
float x=-1.0F;

X = sqrt(x); /* uses double precision */
Here the math.h header is included to avoid a warning message from the compiler.

When used with single-precision data types, the result is a cast to double, a runtime library call is
made (which does not use the FPU) and then a truncation back to float is performed.

The solution is to use the non-ANSI function sqrtf() instead, which operates using single precision
and can be carried out using the FPU. For example:

#i ncl ude <mat h. h>
float x=-1.0F;

x = sqrtf(x); /* uses single precision */

Note that when compiling this code, the compiler flag -fno-math-errno (in addition to -mhard-float
and -mxI-float-sqrt) must be used, to ensure that the compiler does not generate unnecessary code to
handle error conditions by updating the errno variable.

80 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

8 XILINX. Stream Link Interfaces

Stream Link Interfaces

MicroBlaze can be configured with up to 16 Fast Simplex Link (FSL) or AXI14-Stream interfaces,
each consisting of one input and one output port. The channels are dedicated uni-directional point-
to-point data streaming interfaces. The parameter C_STREAM | NTERCONNECT is used to select
FSL or AXI4.

For detailed information on the FSL interface, please refer to the Fast Simplex Link (FSL) Bus data-
sheet, DS449, in the Xilinx EDK IP Documentation. For detailed information on the AXI14-Stream
interface, please refer to the AMBA®4 AXI4-Stream Protocol Specification, Version 1.0 document.

The interfaces on MicroBlaze are 32 bits wide. A separate bit indicates whether the sent/received
word is of control or data type. The get instruction in the MicroBlaze ISA is used to transfer
information from a port to a general purpose register. The put instruction is used to transfer data in
the opposite direction. Both instructions come in 4 flavors: blocking data, non-blocking data,
blocking control, and non-blocking control. For a detailed description of the get and put instructions,
please refer to Chapter 5, “MicroBlaze Instruction Set Architecture”.

Hardware Acceleration

Each link provides a low latency dedicated interface to the processor pipeline. Thus they are ideal
for extending the processors execution unit with custom hardware accelerators. A simple example is
illustrated in Figure 2-25. The code uses RFSLx to indicate the used link, independent of whether
FSL or AXI14-Stream is used.

Example code: *
/I Configure f, Link x
Custom HW Accelerator
cput Rc,RFSLx
/1 Store operands MicroBlaze | p1Reg | | Qp2Reg |

put Ra, RFSLx // op 1 Register

put Rb, RFSLx // op 2 File f
X

/! Load result
Link x

get Rt, RFSLx |

Figure 2-25: Stream Link Used with HW Accelerated Function fx

This method is similar to extending the ISA with custom instructions, but has the benefit of not
making the overall speed of the processor pipeline dependent on the custom function. Also, there are
no additional requirements on the software tool chain associated with this type of functional
extension.

MicroBlaze Processor Reference Guide www.xilinx.com 81
UG081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

Debug and Trace

Debug Overview

MicroBlaze features a debug interface to support JTAG based software debugging tools (commonly
known as BDM or Background Debug Mode debuggers) like the Xilinx Microprocessor Debug
(XMD) tool. The debug interface is designed to be connected to the Xilinx Microprocessor Debug
Module (MDM) core, which interfaces with the JTAG port of Xilinx FPGAs. Multiple MicroBlaze
instances can be interfaced with a single MDM to enable multiprocessor debugging. The debugging
features include:

e Configurable number of hardware breakpoints and watchpoints and unlimited software
breakpoints

o External processor control enables debug tools to stop, reset, and single step MicroBlaze

e Read from and write to: memory, general purpose registers, and special purpose register,
except EAR, EDR, ESR, BTR and PVRO - PVR11, which can only be read

e Support for multiple processors

Trace Overview

The MicroBlaze trace interface exports a number of internal state signals for performance
monitoring and analysis. Xilinx recommends that users only use the trace interface through Xilinx
developed analysis cores. This interface is not guaranteed to be backward compatible in future
releases of MicroBlaze.

82 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Fault Tolerance

Fault Tolerance

The fault tolerance features included in MicroBlaze, enabled with C_FAULT_TCOLERANT, provide
Error Detection for internal block RAMs, and support for Error Detection and Correction (ECC) in
LMB block RAMs. When fault tolerance is enabled, all soft errors in block RAMs are detected and
corrected, which significantly reduces overall failure intensity.

In addition to protecting block RAM, the FPGA configuration memory also generally needs to be
protected. A detailed explanation of this topic, and further references, can be found in the document
SEU Strategies for Virtex-5 Devices (XAPP864).

Configuration

Using MicroBlaze Configuration

Fault tolerance can be enabled in the MicroBlaze configuration dialog, on the General page.

After enabling fault tolerance in MicroBlaze, ECC is automatically enabled in the connected LMB
BRAM Interface Controllers by the tools, when the system is generated. This means that nothing
else needs to be configured to enable fault tolerance and minimal ECC support.

Itis possible (albeit not recommended) to manually override ECC support, leaving the LMB BRAM
unprotected, by disabling C_ECC in the configuration dialogs of all connected LMB BRAM
Interface Controllers. In this case, the internal MicroBlaze block RAM protection is still enabled,
since fault tolerance is enabled.

Using LMB BRAM Interface Controller Configuration

Features

As an alternative to the method described above, it is also possible to enable ECC in the
configuration dialogs of all connected LMB BRAM Interface Controllers. In this case, fault
tolerance is automatically enabled in MicroBlaze by the tools, when the system is generated. This
means that nothing else needs to be configured to enable ECC support and MicroBlaze fault
tolerance.

ECC must either be enabled or disabled in all Controllers, which is enforced by a DRC.

It is possible to manually override fault tolerance support in MicroBlaze, by explicitly disabling
C_FAULT_TOLERANT in the MicroBlaze configuration dialog. This is not recommended, unless
no block RAM is used in MicroBlaze, and there is no need to handle bus exceptions from
uncorrectable ECC errors.

An overview of all MicroBlaze fault tolerance features is given here. Further details on each feature
can be found in the following sections:

e “Instruction Cache Operation”
e “Data Cache Operation”

e “UTLB Management”

e “Branch Target Cache”

e “Instruction Bus Exception”

e “Data Bus Exception”

o “Exception Causes”

MicroBlaze Processor Reference Guide www.xilinx.com 83

UG081 (v13.4)

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp864.pdf

Chapter 2: MicroBlaze Architecture & XILINX.

The LMB BRAM Interface Controller v3.00.a or later provides the LMB ECC implementation. For
details, including performance and resource utilization, see the IP Processor LMB BRAM Interface
Controller (DS452) data-sheet, in the Xilinx EDK IP Documentation.

Instruction and Data Cache Protection

To protect the block RAM in the Instruction and Data Cache, parity is used. When a parity error is
detected, the corresponding cache line is invalidated. This forces the cache to reload the correct
value from external memory. Parity is checked whenever a cache hit occurs.

Note that this scheme only works for write-through, and thus write-back data cache is not available
when fault tolerance is enabled. This is enforced by a DRC.

When new values are written to a block RAM in the cache, parity is also calculated and written. One
parity bit is used for the tag, one parity bit for the instruction cache data, and one parity bit for each
word in a data cache line.

In many cases, enabling fault tolerance does not increase the required number of cache block RAMs,
since spare bits can be used for the parity. Any increase in resource utilization, in particular number
of block RAMs, can easily be seen in the MicroBlaze configuration dialog, when enabling fault
tolerance.

Memory Management Unit Protection

To protect the block RAM in the MMU Unified Translation Look-Aside Buffer (UTLB), parity is
used. When a parity error is detected during an address translation, a TLB miss exception occurs,
forcing software to reload the entry.

When a new TLB entry is written using the TLBHI and TLBLO registers, parity is calculated. One
parity bit is used for each entry.

Parity is also checked when a UTLB entry is read using the TLBHI and TLBLO registers. When a
parity error is detected in this case, the entry is marked invalid by clearing the valid bit.

Enabling fault tolerance does not increase the MMU block RAM size, since a spare bit is available
for the parity.

Branch Target Cache Protection

To protect block RAM in the Branch Target Cache, parity is used. When a parity error is detected
when looking up a branch target address, the address is ignored, forcing a normal branch.

When a new branch address is written to the Branch Target Cache, parity is calculated. One parity
bit is used for each address.

Enabling fault tolerance does not increase the Branch Target Cache block RAM size, since a spare
bit is available for the parity.

Exception Handling

With fault tolerance enabled, if an error occurs in LMB block RAM, the LMB BRAM Interface
Controller generates error signals on the LMB interface.

If exceptions are enabled in MicroBlaze, by setting the EE bit in the Machine Status Register, the
uncorrectable error signal either generates an instruction bus exception or a data bus exception,
depending on the affected interface.

Should a bus exception occur when an exception is in progress, MicroBlaze is halted, and the
external error signal MB_Er r or is set. This behavior ensures that it is impossible to execute an
instruction corrupted by an uncorrectable error.

84

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

8 XILINX. Fault Tolerance

Software Support

Scrubbing

To ensure that bit errors are not accumulated in block RAMs, they must be periodically scrubbed.

The standalone BSP provides the function microblaze_scrub() to perform scrubbing of the
entire LMB block RAM and all MicroBlaze internal block RAMs used in a particular configuration.
This function is intended to be called periodically from a timer interrupt routine.

The following example code illustrates how this can be done.

#i ncl ude "xparaneters. h"
#i nclude "xtnrctr.h"

#i nclude "xintc.h"

#i nclude "nmb_interface. h”

#define SCRUB_PERI CD ...

Xintc InterruptController; /* The Interrupt Controller instance */
XTnmr Ctr TinmerCounterlnst;/* The Tinmer Counter instance */

voi d M croBl azeScrubHandl er (void *Cal | BackRef, u8 Tnr Ctr Nunber)
{

/* Performother tiner interrupt processing here */

m crobl aze_scrub();

}

int main (void)

{

i nt Status;

/*
* Initialize the timer counter so that it's ready to use,
* specify the device IDthat is generated in xparaneters.h
*/
Status = XTnrCtr_Initialize(&Ti merCounterlnst, TMRCTR DEVICE_I D);
if (Status != XST_SUCCESS) {
return XST_FAI LURE;

}

/*

* Connect the tiner counter to the interrupt subsystem such that
* interrupts can occur.

*/
Status = Xintc_lnitialize(& nterruptController, |INTC DEVICE ID);
if (Status !'= XST_SUCCESS) {

return XST_FAI LURE;

}

/*

* Connect a device driver handler that will be called when an

* interrupt for the device occurs, the device driver handl er perforns

* the specific interrupt processing for the device

*/

Status = Xlintc_Connect (& nterruptController, TMRCTR_DEVI CE_I D,
(XI'nterrupt Handl er) XTnr Ct r _I nt er r upt Handl er,
(void *) &TimerCounterlnst);

if (Status != XST_SUCCESS) {

MicroBlaze Processor Reference Guide www.xilinx.com 85
UGO081 (v13.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

return XST_FAI LURE;
}

/*

* Start the interrupt controller such that interrupts are enabl ed for
* all devices that cause interrupts, specifying real node so that the
* timer counter can cause interrupts thru the interrupt controller.
*/
Status = Xintc_Start(& nterruptController, X N _REAL_MODE);
if (Status != XST_SUCCESS) ({

return XST_FAI LURE;

}

/*
* Setup the handl er for the tinmer counter that will be called fromthe
* interrupt context when the tinmer expires, specify a pointer to the
* timer counter driver instance as the call back reference so the
* handler is able to access the instance data
*/
XTnr Ctr _Set Handl er (&Ti mer Count er I nst, M croBl azeScr ubHandl er,
&Ti mer Count er I nst) ;

Enabl e the interrupt of the timer counter so interrupts will occur
and use auto rel oad node such that the tinmer counter will reload
itself automatically and continue repeatedly, without this option
* it would expire once only

*/

XTnr Ctr_Set Opti ons(&Ti nmer Counterlnst, TIMER_CNTR_O,

XTC_I NT_MODE_OPTI ON | XTC_AUTO_RELOAD OPTION);

* X X

/*

* Set a reset value for the timer counter such that it will expire

* earlier than letting it roll over fromO0, the reset value is | oaded
* into the timer counter when it is started

*/

XTnr Ctr _Set Reset Val ue(Tmr Ctr I nstancePtr, Tnr Ct r Nunber , SCRUB_PERI OD) ;

/*

* Start the tinmer counter such that it's increnenting by default,
* then wait for it to tinmeout a nunber of tines

*/

XTnr Ctr_Start (&Ti mer Counterlnst, TINMER_CNTR 0);

}...

See the section “Scrubbing” below for further details on how scrubbing is implemented, including
how to calculate the scrubbing rate.

BRAM Driver

The standalone BSP BRAM driver is used to access the ECC registers in the LMB BRAM Interface
Controller, and also provides a comprehensive self test.

By implementing the SDK Xilinx C Project "Peripheral Tests", a self-test example including the
BRAM self test for each LMB BRAM Interface Controller in the system is generated. Depending on
the ECC features enabled in the LMB BRAM Interface Controller, this code will perform all
possible tests of the ECC function.

86 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Fault Tolerance

The self-test example can be found in the standalone BSP BRAM driver source code, typically in the
subdirectory microblaze 0/libsrc/bram_v3 00 _a/src/xbram selftest.c.

Scrubbing

Scrubbing Methods

Scrubbing is performed using specific methods for the different block RAMs:

e Instruction and data caches: All lines in the caches are cyclically invalidated using the WIC
and WDC instructions respectively. This forces the cache to reload the cache line from external
memory.

e Memory Management Unit UTLB: All entries in the UTLB are cyclically invalidated by
writing the TLBHI register with the valid bit cleared.

e Branch Target Cache: The entire BTC is invalided by doing a synchronizing branch, BRI 4.

e LMB block RAM: All addresses in the memory are cyclically read and written, thus correcting
any single bit errors on each address.

It is also possible to add interrupts for correctable errors from the LMB BRAM Interface
Controllers, and immediately scrub this address in the interrupt handler, although in most cases it
only improves reliability slightly.

The failing address can be determined by reading the Correctable Error First Failing Address
Register in each of the LMB BRAM Interface Controllers. To be able to generate an interrupt
C _ECC_STATUS_REG STERS must be set to 1 in the connected LMB BRAM Interface

Controllers, and to read the failing address C_CE_FAI LI NG_REGQ STERS must be set to 1.

Calculating Scrubbing Rate

The scrubbing rate depends on failure intensity and desired reliability.
The approximate equation to determine the LMB memory scrubbing rate is in our case given by

2
BER

Py~ 760(—2j
SR

where Py is the probability of an uncorrectable error in a memory word, BER is the soft error rate
for a single memory bit, and SR is the Scrubbing Rate.

The soft error rates affecting block RAM for each product family can be found in Device Reliability

Report (UG116).

Use Cases

Several of common use cases are described here. These use cases are derived from the IP Processor
LMB BRAM Interface Controller (DS452) data-sheet.

Minimal

This system is obtained when enabling fault tolerance in MicroBlaze, without doing any other
configuration.

The system is suitable when area constraints are high, and there is no need for testing of the ECC
function, or analysis of error frequency and location. No ECC registers are implemented. Single bit
errors are corrected by the ECC logic before being passed to MicroBlaze. Uncorrectable errors set
an error signal, which generates an exception in MicroBlaze.

MicroBlaze Processor Reference Guide www.xilinx.com 87

UG081 (v13.4)

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf

Chapter 2: MicroBlaze Architecture & XILINX.

Small

This system should be used when it is necessary to monitor error frequency, but there is no need for
testing of the ECC function. It is a minimal system with Correctable Error Counter Register added
to monitor single bit error rates. If the error rate is too high, the scrubbing rate should be increased
to minimize the risk of a single bit error becoming an uncorrectable double bit error. Parameters set
are C ECC=1and C_CE_COUNTER_W DTH = 10.

Typical

Full

This system represents a typical use case, where it is required to monitor error frequency, as well as
generating an interrupt to immediately correct a single bit error through software. It does not provide
support for testing of the ECC function. It is a small system with Correctable Error First Failing
registers and Status register added. A single bit error will latch the address for the access into the
Correctable Error First Failing Address Register and set the CE_STATUS bit in the ECC Status
Register. An interrupt will be generated triggering MicroBlaze to read the failing address and then
perform a read followed by a write on the failing address. This will remove the single bit error from
the BRAM, thus reducing the risk of the single bit error becoming a uncorrectable double bit error.
Parameterssetare C_ ECC=1,C_CE_COUNTER W DTH=10,C_ECC_STATUS_REG STER=1
and C_CE_FAI LI NG_REJ STERS = 1.

This system uses all of the features provided by the LMB BRAM Interface Controller, to enable full
error injection capability, as well as error monitoring and interrupt generation. It is a typical system
with Uncorrectable Error First Failing registers and Fault Injection registers added. All features are
switched on for full control of ECC functionality for system debug or systems with high fault
tolerance requirements. Parameters setare C ECC=1, C CE_ COUNTER_W DTH = 10,
C_ECC_STATUS_REGQ STER=1and C_CE_FAI LI NG_REQ STERS =1,

C_UE_FAI LI NG_REG STERS=1and C_FAULT_I NJECT =1.

88

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Lockstep Operation

Lockstep Operation

MicroBlaze is able to operate in a lockstep configuration, where two or more identical MicroBlaze
cores execute the same program. By comparing the outputs of the cores, any tampering attempts,
transient faults or permanent hardware faults can be detected.

System Configuration

The parameter C_LOCKSTEP_SLAVE is set to one on all slave MicroBlaze cores in the system,
except the master (or primary) core. The master core drives all the output signals, and handles the
debug functionality. The port Lockst ep_Mast er _Qut on the master is connected to the port
Lockst ep_Sl ave_I n on the slaves, in order to handle debugging.

The slave cores should not drive any output signals, only receive input signals. This must be ensured
by only connecting signals to the input ports of the slaves. For buses this means that each individual
input port must be explicitly connected.

The port Lockst ep_Qut on the master and slave cores provide all output signals for comparison.
Unless an error occurs, individual signals from each of the cores are identical every clock cycle.

To ensure that lockstep operation works properly, all input signals to the cores must be synchronous.
Input signals that may require external synchronization are | nt er r upt , Reset , Mo_Reset
Ext Brk, and Ext _Nm Brk.

Use Cases

Two common use cases are described here. In addition, lockstep operation provides the basis for
implementing triple modular redundancy on MicroBlaze core level.

Tamper Protection

This application represents a high assurance use case, where it is required that the system is tamper-
proof. A typically example is a cryptographic application.

The approach involves having two redundant MicroBlaze processors with dedicated local memory
and redundant comparators, each in a protected area. The outputs from each processor feed two
comparators and each processor receive copies of every input signal.

The redundant MicroBlaze processors are functionally identical and completely independent of
each other, without any connecting signals. The only exception is debug logic and associated
signals, since it is assumed that debugging is disabled before any productization and certification of
the system.

The outputs from the master MicroBlaze core drive the peripherals in the system. All data leaving
the protected area pass through inhibitors. Each inhibitor is controlled from its associated
comparator.

Each protected area of the design must be implemented in its own partition, using a hierarchical
Single Chip Cryptography (SCC) flow. A detailed explanation of this flow, and further references,
can be found in the document Hierarchical Design Methodology Guide (UG748).

For Spartan-6 target architectures, the parameter C_AVO D_PRI M TI VES must be set to 3
(BOTH) in order to follow the SCC flow.

A block diagram of the system is shown in Figure 2-26.

MicroBlaze Processor Reference Guide www.xilinx.com 89
UGO081 (v13.4)

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.4&topic=sw+manuals&sub=Hierarchical_Design_Methodology_Guide.pdf

Chapter 2: MicroBlaze Architecture

& XILINX.

MicroBlaze Partition

Debug Module

C_LOCKSTEP_SLAVE =0
.| DLMB —
BRAM Controller .
SRAM MicroBlaze
Master
ILMB —
BRAM Controller [
MicroBlaze Debug |

Outputs

>

\/

H HqIyul

m Hqiyul

Inputs

Lockstep_Master_Out

Comparator Partition

MicroBlaze Partition

DLMB
BRAM Controller

BRAM

ILMB

VLockstep_SIave_In

Debug

MicroBlaze
Slave

BRAM Controller

C_LOCKSTEP_SLAVE =1

Lockstep_Out

N
Lockstep_Out Comparator
M
N
-+
1
Inputs
N
Comparator Partition

Comparator

Debug Interface - Removed for Production

Figure 2-26:

Error Detection

Lockstep Tamper Protection Application

Peripheral
Partition

1/0 Interfaces

External Memory
Interfaces

The error detection use case requires that all transient and permanent faults are detected. This is
essential in fail safe and fault tolerant applications, where redundancy is utilized to improve system
availability.

In this system two redundant MicroBlaze processors run in lockstep. A comparator is used to signal
an error when a mis-match is detected on the outputs of the two processors. Any error immediately

causes both processors to halt, preventing further error propagation.

The redundant MicroBlaze processors are functionally identical, except for debug logic and
associated signals.The outputs from the master MicroBlaze core drive the peripherals in the system.

The system contains the basic building block for designing a complete fault tolerant application,
where one or more additional blocks must be added to provide redundancy.

This use case is illustrated in Figure 2-27.

90

www.xilinx.com

MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Lockstep Operation

C_LOCKSTEP_SLAVE =1

Figure 2-27: Lockstep Error Detection Application

: C_LOCKSTEP_SLAVE =0 Error Reset :
. g —
|| DLMB ' .
BRAM Controller T . Outputs >
; MicroBlaze :
BRAM ' Master < Inputs !
L ILMB ' :
BRAM Controller '
! Lockstep_Out :
MicroBlaze Debug .
Debug Module ! :
l Comparator l
! Debug !
: | Lockstep_Out >| !
L MicroBlaze :
: Slave < Inputs :
: < :

1/0O Interfaces

External Memory
Interfaces

MicroBlaze Processor Reference Guide www.xilinx.com

UG081 (v13.4)

91

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture & XILINX.

92 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Chapter 3

MicroBlaze Signal Interface Description

This chapter describes the types of signal interfaces that can be used to connect MicroBlaze™.

Overview

The MicroBlaze core is organized as a Harvard architecture with separate bus interface units for data

and instruction accesses. The following four memory interfaces are supported: Local Memory Bus

(LMB), the AMBA® AXI4 interface (AXI4), the IBM Processor Local Bus (PLB), and Xilinx

CacheLink (XCL). The LMB provides single-cycle access to on-chip dual-port block RAM. The

AXIl4 and PLB interfaces provide a connection to both on-chip and off-chip peripherals and

memory. The CacheLink interface is intended for use with specialized external memory controllers.

MicroBlaze also supports up to 16 Fast Simplex Link (FSL) or AXI14-Stream interface ports, each

with one master and one slave interface.

Features

MicroBlaze can be configured with the following bus interfaces:

e The AMBA AXI4 Interface (see ARM® AMBA® AXI Protocol Specification, Version 2.0,
ARM IHI 0022C), both for peripheral interfaces and cache interfaces.

e A 32-bit version of the PLB V4.6 interface (see IBM’s 128-Bit Processor Local Bus
Architectural Specifications, Version 4.6).

e LMB provides simple synchronous protocol for efficient block RAM transfers

e FSL or AXI4-Stream provides a fast non-arbitrated streaming communication mechanism

e XCL provides a fast slave-side arbitrated streaming interface between caches and external
memory controllers

e Debug interface for use with the Microprocessor Debug Module (MDM) core

e Trace interface for performance analysis

MicroBlaze Processor Reference Guide www.xilinx.com 93

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Chapter 3: MicroBlaze Signal Interface Description

MicroBlaze 1/0O Overview
The core interfaces shown in Figure 3-1 and the following Table 3-1 are defined as follows:

M_AXI_DP: Peripheral Data Interface, AXI4-Lite or AXI14 interface

DPLB:

DLMB:

M_AXI_IP:

IPLB:

ILMB:
MO_AXIS..M15_AXIS:
S0_AXIS..S15_AXIS:
MFSL 0..15:

DWFSL 0..15:
SFSLO..15:
DRFSL0..15:

DXCL:

M_AXI_DC:

Data interface, Processor Local Bus
Data interface, Local Memory Bus (BRAM only)
Peripheral Instruction interface, AXI14-Lite interface

Instruction interface, Processor Local Bus

Instruction interface, Local Memory Bus (BRAM only)
AXI4-Stream interface master direct connection interfaces
AXI4-Stream interface slave direct connection interfaces

FSL master interfaces
FSL master direct connection interfaces

FSL slave interfaces
FSL slave direct connection interfaces

Data side Xilinx CacheLink interface (FSL master/slave pair)

Data side cache AXI4 interface

IXCL:
M_AXI_IC:
Core:

Instruction side Xilinx CacheLink interface (FSL master/slave pair)
Instruction side cache AXI4 interface
Miscellaneous signals for: clock, reset, debug, and trace

Data-side
bus interface

Instruction-side
bus interface

Memory Management Unit (MMU)
- N
UTLB ﬁ'—‘
M_AXI_IC |:> D —/ <::> M_AXI_DC
5| 0 T |
(@) (@)
IXCL_M < & 2 :> DXCL_M
_ 2 o
® Program v ALU ®
IXCL_S |:> Counter - <::| DXCL_S
Special <: Shift
Purpose .
@ Reg?sters L] |_Barrel Shift @
Branch Multiplier
oo ZAN < oPiE >
Cache Divider
BN <o >
IPLB >
Bus 4 Y Bus
IF , IF MO_AXIS..
EED o Meetion —\ { } {} M15_AXIS
Instruction SO0_AXIS..
Decode |1 S15_AXIS
—N] Register File MFSL 0..15 or
—/ 32X 32b DWFSL 0..15
A SFSL 0..15
. X . or
Optional MicroBlaze feature DRFSL 0..15

Figure 3-1: MicroBlaze Core Block Diagram

MicroBlaze Processor Reference Guide
UG081 (v13.4)

94 www.xilinx.com

http://www.xilinx.com

& XILINX.

MicroBlaze I/0O Overview

Table 3-1: Summary of MicroBlaze Core I/O

Signal Interface le] Description
M_AX1_DP_AWID M_AXI_DP O | Master Write address ID
M_AXI1_DP_AWADDR M_AXI_DP O Master Write address
M_AX1_DP_AWLEN M_AXI_DP O Master Burst length
M_AX1_DP_AWSIZE M_AXI_DP O | Master Burst size
M_AXI1_DP_AWBURST M_AXI_DP O | Master Burst type
M_AX1_DP_AWLOCK M_AXI.DP | O | Master Lock type
M_AX1_DP_AWCACHE M_AXI.DP | O | Master Cache type
M_AX1_DP_AWPROT M_AXI_DP O | Master Protection type
M_AX1_DP_AWQOS M_AXI_DP O | Master Quality of Service
M_AXI1_DP_AWVALID M_AXI_DP O Master Write address valid
M_AXI_DP_AWREADY M_AXI_DP I Slave Write address ready
M_AXI1_DP_WDATA M_AXI_DP O | Master Write data
M_AX1_DP_WSTRB M_AXI_DP O | Master Write strobes
M_AXI_DP_WLAST M_AXI DP O Master Write last
M_AXI_DP_WVALID M_AXI_DP O | Master Write valid
M_AXI1_DP_WREADY M_AXI_DP I Slave Write ready
M_AXI1_DP_BID M_AXI_DP I Slave Response ID
M_AX1_DP_BRESP M_AXI_DP I Slave Write response
M_AXI_DP_BVALID M_AXI_DP I Slave Write response valid
M_AXI1_DP_BREADY M_AXI_DP O Master Response ready
M_AXI_DP_ARID M_AXI_DP O Master Read address ID
M_AX1_DP_ARADDR M_AXI_DP O | Master Read address
M_AX1_DP_ARLEN M_AXI_DP O | Master Burst length
M_AX1_DP_ARSIZE M_AXI_DP O | Master Burst size
M_AX1_DP_ARBURST M_AXI_DP O | Master Burst type
M_AXI_DP_ARLOCK M_AXI DP O Master Lock type
M_AX1_DP_ARCACHE M_AXI_DP @] Master Cache type
M_AXI1_DP_ARPROT M_AXI_DP O Master Protection type
M_AX1_DP_ARQOS M_AXI_DP O | Master Quality of Service
M_AXI_DP_ARVALID M_AXI_DP O | Master Read address valid
M_AX1_DP_ARREADY M_AXI_DP I Slave Read address ready

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

95

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-1: Summary of MicroBlaze Core 1/0 (Continued)

Signal Interface /0 Description
M_AXI_DP_RID M_AXILDP | I |Slave Read ID tag
M_AX1_DP_RDATA M_AXI_DP I Slave Read data
M_AXI_DP_RRESP M_AXI_DP I Slave Read response
M_AXI_DP_RLAST M_AXI_DP I Slave Read last
M_AX1_DP_RVALID M_AXI_DP I Slave Read valid
M_AX1_DP_RREADY M_AXI_DP O | Master Read ready
M_AXI_IP_AWID M_AXI_IP O Master Write address ID
M_AXI1_IP_AWADDR M_AXI_IP O Master Write address
M_AX1_IP_AWLEN M_AXI_IP O | Master Burst length
M_AXI_IP_AWSIZE M_AXI_IP O | Master Burst size
M_AX1_IP_AWBURST M_AXI_IP O | Master Burst type
M_AX1_1P_AWLOCK M_AXI_IP O | Master Lock type
M_AX1_1P_AWCACHE M_AXI_IP O Master Cache type
M_AXI_IP_AWPROT M_AXI_IP O Master Protection type
M_AX1_IP_AWQOS M_AXI_IP O | Master Quality of Service
M_AXT1_IP_AWVALID M_AXI_IP O | Master Write address valid
M_AXI_IP_AWREADY M_AXI_IP I Slave Write address ready
M_AX1_I1P_WDATA M_AXI_IP O Master Write data
M_AX1_IP_WSTRB M_AXI_IP O | Master Write strobes
M_AX1_IP_WLAST M_AXI_IP O Master Write last
M_AX1_IP_WVALID M_AXI_IP O | Master Write valid
M_AX1_IP_WREADY M_AXL_IP 1 Slave Write ready
M_AXI_IP_BID M_AXI_IP I Slave Response ID
M_AX1_IP_BRESP M_AXI_IP I Slave Write response
M_AXI_IP_BVALID M_AXI_IP I Slave Write response valid
M_AXI_IP_BREADY M_AXI_IP O Master Response ready
M_AXI_IP_ARID M_AXI_IP O | Master Read address ID
M_AXI_IP_ARADDR M_AXI_IP O | Master Read address
M_AX1_IP_ARLEN M_AXI_IP O | Master Burst length
M_AX1_IP_ARSIZE M_AXI_IP O | Master Burst size
M_AX1_I1P_ARBURST M_AXI_IP @) Master Burst type
M_AXI_IP_ARLOCK M_AXI_IP O | Master Lock type

96

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

MicroBlaze I/0O Overview

Table 3-1: Summary of MicroBlaze Core 1/0 (Continued)

Signal Interface /0 Description
M_AXI1_IP_ARCACHE M_AXI IP O Master Cache type
M_AXI_IP_ARPROT M_AXI_IP O Master Protection type
M_AX1_IP_ARQOS M_AXI_IP O | Master Quality of Service
M_AXT1_IP_ARVALID M_AXI_IP O | Master Read address valid
M_AXI_IP_ARREADY M_AXI_IP I Slave Read address ready
M_AX1_IP_RID M_AXI_IP I Slave Read ID tag
M_AX1_I1P_RDATA M_AXI_IP I Slave Read data
M_AX1_IP_RRESP M_AXI_IP I Slave Read response
M_AX1_IP_RLAST M_AXI_IP I Slave Read last
M_AX1_IP_RVALID M_AXI_IP I | Slave Read valid
M_AXI1_IP_RREADY M_AXIL_IP O | Master Read ready
M_AXI1_DC_AWADDR M_AXI_DC O Master Write address
M_AX1_DC_AWLEN M_AXI_DC O Master Burst length
M_AX1_DC_AWSIZE M_AXI_DC O | Master Burst size
M_AXI1_DC_AWBURST M_AXI_DC O | Master Burst type
M_AX1_DC_AWLOCK M_AXI.DC | O | Master Lock type
M_AX1_DC_AWCACHE M_AXI_.DC | O | Master Cache type
M_AX1_DC_AWPROT M_AXI_DC O | Master Protection type
M_AX1_DC_AWQOS M_AXI_DC O | Master Quality of Service
M_AXI1_DC_AWVALID M_AXI_DC O Master Write address valid
M_AX1_DC_AWREADY M_AXI_DC I Slave Write address ready
M_AX1_DC_AWUSER M_AXI.DC | O | Master Write address user signals
M_AXI1_DC_WDATA M_AXI_DC O | Master Write data
M_AXI1_DC_WSTRB M_AXI_DC O Master Write strobes
M_AX1_DC_WLAST M_AXI_DC @] Master Write last
M_AX1_DC_WVALID M_AXI_DC O | Master Write valid
M_AX1_DC_WREADY M_AXI_DC I Slave Write ready
M_AXI_DC_WUSER M_AXI_DC O | Master Write user signals
M_AXI_DC_BRESP M_AXI_DC I Slave Write response
M_AX1_DC_BID M_AXI_DC I Slave Response ID
M_AX1_DC_BVALID M_AXI_DC I Slave Write response valid
M_AX1_DC_BREADY M_AXI_DC O | Master Response ready

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

97

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-1: Summary of MicroBlaze Core 1/0 (Continued)

Signal Interface /0 Description
M_AX1_DC_BUSER M_AXI_DC I | Slave Write response user signals
M_AXI_DC_ARID M_AXI_DC O Master Read address ID
M_AXI_DC_ARADDR M_AXI_DC O | Master Read address
M_AX1_DC_ARLEN M_AXI DC O | Master Burst length
M_AX1_DC_ARSIZE M_AXI_DC O | Master Burst size
M_AX1_DC_ARBURST M_AXI_DC O | Master Burst type
M_AX1_DC_ARLOCK M_AXI_DC O | Master Lock type
M_AX1_DC_ARCACHE M_AXI_DC O | Master Cache type
M_AX1_DC_ARPROT M_AXI_DC O | Master Protection type
M_AXI_DC_ARQOS M_AXI_ DC O | Master Quality of Service
M_AXI_DC_ARVALID M_AXI_DC O | Master Read address valid
M_AX1_DC_ARREADY M_AXI_DC I Slave Read address ready
M_AX1_DC_ARUSER M_AXI_DC O | Master Read address user signals
M_AX1_DC_RID M_AXI_DC I Slave Read ID tag
M_AX1_DC_RDATA M_AXI_DC I Slave Read data
M_AX1_DC_RRESP M_AXI_DC I Slave Read response
M_AX1_DC_RLAST M_AXI_DC I Slave Read last
M_AX1_DC_RVALID M_AXI_DC I Slave Read valid
M_AX1_DC_RREADY M_AXI_DC O | Master Read ready
M_AXI1_DC_RUSER M_AXI_DC I Slave Read user signals
M_AXI_IC_AWID M_AXI_IC O | Master Write address ID
M_AXI_IC_AWADDR M_AXI_IC O | Master Write address
M_AXI_IC_AWLEN M_AXI_IC O Master Burst length
M_AX1_IC_AWSIZE M_AXI_IC O | Master Burst size
M_AX1_IC_AWBURST M_AXI_IC O | Master Burst type
M_AX1_IC_AWLOCK M_AXLIC | O | Master Lock type
M_AXI1_IC_AWCACHE M_AXI_IC O | Master Cache type
M_AX1_I1C_AWPROT M_AXI_IC O | Master Protection type
M_AX1_IC_AWQOS M_AXI_IC O | Master Quality of Service
M_AX1_IC_AWVALID M_AXI_IC O Master Write address valid
M_AX1_IC_AWREADY M_AXI_IC I Slave Write address ready
M_AX1_IC_AWUSER M_AXI_IC O | Master Write address user signals

98

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

MicroBlaze I/0O Overview

Table 3-1: Summary of MicroBlaze Core 1/0O (Continued)

Signal Interface /0 Description
M_AX1_IC_WDATA M_AXI_IC O Master Write data
M_AXI_IC_WSTRB M_AXI_IC O Master Write strobes
M_AXI_IC_WLAST M_AXI_IC O | Master Write last
M_AXI1_IC_WVALID M_AXI_IC O | Master Write valid
M_AX1_IC_WREADY M_AXL IC I Slave Write ready
M_AXI_IC_WUSER M_AXI_IC O Master Write user signals
M_AX1_IC_BID M_AXI_IC I Slave Response ID
M_AX1_IC_BRESP M_AXI_IC I Slave Write response
M_AX1_IC_BVALID M_AXI_IC I | Slave Write response valid
M_AXI_IC_BREADY M_AXI_IC O | Master Response ready
M_AX1_IC_BUSER M_AXI_IC I | Slave Write response user signals
M_AXI_IC_ARID M_AXI_IC O Master Read address ID
M_AX1_IC_ARADDR M_AXI_IC O | Master Read address
M_AXI_IC_ARLEN M_AXI_IC O Master Burst length
M_AXI_IC_ARSIZE M_AXI_IC O | Master Burst size
M_AX1_IC_ARBURST M_AXI_IC O | Master Burst type
M_AXI_IC_ARLOCK M_AXI_IC O | Master Lock type
M_AXI_IC_ARCACHE M_AXI_IC O | Master Cache type
M_AX1_IC_ARPROT M_AXI_IC O | Master Protection type
M_AXI_IC_ARQOS M_AXI_IC O Master Quality of Service
M_AX1_IC_ARVALID M_AXI_IC O | Master Read address valid
M_AXI_IC_ARREADY M_AXI_IC I Slave Read address ready
M_AX1_IC_ARUSER M_AXLIC O | Master Read address user signals
M_AX1_IC_RID M_AXI_IC I Slave Read ID tag
M_AXI1_IC_RDATA M_AXI_IC I Slave Read data
M_AX1_IC_RRESP M_AXI_IC I Slave Read response
M_AX1_IC_RLAST M_AXI_IC I Slave Read last
M_AX1_IC_RVALID M_AXL IC 1 Slave Read valid
M_AX1_IC_RREADY M_AXL IC O | Master Read ready
M_AX1_IC_RUSER M_AXI_IC I Slave Read user signals

DPLB_M ABort DPLB (0] Data Interface PLB abort bus request
indicator

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

99

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-1: Summary of MicroBlaze Core 1/0 (Continued)

Signal Interface /0 Description

DPLB_ M ABus DPLB 0] Data Interface PLB address bus

DPLB_M UABus DPLB O Data Interface PLB upper address bus

DPLB M BE DPLB 0 Data Interface PLB byte enables

DPLB_M busLock DPLB o] Data Interface PLB bus lock

DPLB M | ockErr DPLB o] Data Interface PLB lock error indicator

DPLB_M Msi ze DPLB 0 Data Interface PLB master data bus size

DPLB M priority DPLB O Data Interface PLB bus request priority

DPLB_M rdBur st DPLB o] Data Interface PLB burst read transfer
indicator

DPLB_M r equest DPLB O Data Interface PLB bus request

DPLB_M RNW DPLB o] Data Interface PLB read/not write

DPLB M si ze DPLB o] Data Interface PLB transfer size

DPLB M TAttri bute DPLB 0 Data Interface PLB Transfer Attribute bus

DPLB_M type DPLB O Data Interface PLB transfer type

DPLB_M wr Bur st DPLB o] Data Interface PLB burst write transfer
indicator

DPLB_M w DBus DPLB O Data Interface PLB write data bus

DPLB_MBusy DPLB | Data Interface PLB slave busy indicator

DPLB_MRdErr DPLB | Data Interface PLB slave read error indicator

DPLB_MW Err DPLB | Data Interface PLB slave write error
indicator

DPLB M RQ DPLB | Data Interface PLB slave interrupt indicator

DPLB_MN BTer m DPLB | Data Interface PLB terminate write burst
indicator

DPLB_MN DAck DPLB | Data Interface PLB write data acknowledge

DPLB_MAddr Ack DPLB | Data Interface PLB address acknowledge

DPLB_MRdBTer m DPLB | Data Interface PLB terminate read burst
indicator

DPLB_MRdDAck DPLB | Data Interface PLB read data acknowledge

DPLB_MRdDBus DPLB | Data Interface PLB read data bus

DPLB_NMRdWiAddr DPLB | Data Interface PLB read word address

DPLB_MRrearbitrate DPLB | Data Interface PLB bus rearbitrate indicator

DPLB_MsSi ze DPLB | Data Interface PLB slave data bus size

DPLB_MTi neout DPLB | Data Interface PLB bus timeout

100

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

8 X||_|NX MicroBlaze I/0O Overview

Table 3-1: Summary of MicroBlaze Core 1/0 (Continued)

Signal Interface /0 Description

| PLB_M ABort IPLB 0] Instruction Interface PLB abort bus request
indicator

| PLB_M ABuUS IPLB o] Instruction Interface PLB address bus

| PLB_M UABuUS IPLB 0 Instruction Interface PLB upper address bus

| PLB_M BE IPLB o] Instruction Interface PLB byte enables

| PLB_M busLock IPLB o] Instruction Interface PLB bus lock

| PLB_M | ockErr IPLB 0 Instruction Interface PLB lock error
indicator

| PLB_ M MsSi ze IPLB 0 Instruction Interface PLB master data bus
size

| PLB M priority IPLB O Instruction Interface PLB bus request
priority

| PLB_M r dBur st IPLB 0 Instruction Interface PLB burst read transfer
indicator

| PLB_M request IPLB o] Instruction Interface PLB bus request

| PLB_M RNW IPLB o] Instruction Interface PLB read/not write

| PLB_M si ze IPLB 0 Instruction Interface PLB transfer size

| PLB M TAttribute IPLB 0] Instruction Interface PLB Transfer Attribute
bus

| PLB M type IPLB O Instruction Interface PLB transfer type

| PLB_M wr Bur st IPLB 0 Instruction Interface PLB burst write transfer
indicator

| PLB_M wr DBus IPLB o] Instruction Interface PLB write data bus

| PLB_MBuUsy IPLB | Instruction Interface PLB slave busy
indicator

| PLB_MRdErr IPLB | Instruction Interface PLB slave read error
indicator

| PLB_ MW Err IPLB | Instruction Interface PLB slave write error
indicator

| PLB_M RQ IPLB | Instruction Interface PLB slave interrupt
indicator

| PLB_MW BTer m IPLB | Instruction Interface PLB terminate write
burst indicator

| PLB_MW DAck IPLB | Instruction Interface PLB write data
acknowledge

| PLB_MAddr Ack IPLB | Instruction Interface PLB address
acknowledge

MicroBlaze Processor Reference Guide www.xilinx.com 101

UG081 (v13.4)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-1: Summary of MicroBlaze Core 1/0 (Continued)

Signal Interface /0 Description

| PLB_MRdBTerm IPLB | Instruction Interface PLB terminate read
burst indicator

| PLB_MRdDAck IPLB | Instruction Interface PLB read data
acknowledge

| PLB_MRdDBuUS IPLB | Instruction Interface PLB read data bus

| PLB_MRdWiAddr IPLB | Instruction Interface PLB read word address

| PLB MRearbitrate IPLB | Instruction Interface PLB bus rearbitrate
indicator

| PLB_MSSi ze IPLB | Instruction Interface PLB slave data bus size

| PLB_MTi neout IPLB | Instruction Interface PLB bus timeout

Dat a_Addr[0: 31] DLMB O Data interface LMB address bus

Byt e_Enabl e[0: 3] DLMB 0 Data interface LMB byte enables

Data Wite[0: 31] DLMB o] Data interface LMB write data bus

D AS DLMB o] Data interface LMB address strobe

Read_St robe DLMB 0 Data interface LMB read strobe

Wite Strobe DLMB 0] Data interface LMB write strobe

Dat a_Read[0: 31] DLMB | Data interface LMB read data bus

DReady DLMB | Data interface LMB data ready

DWai t DLMB | Data interface LMB data wait

DCE DLMB | Data interface LMB correctable error

DUE DLMB | Data interface LMB uncorrectable error

I nstr_Addr[0: 31] ILMB O Instruction interface LMB address bus

| _AS ILMB 0 Instruction interface LMB address strobe

| Fetch ILMB 0 Instruction interface LMB instruction fetch

I nstr[0:31] ILMB | Instruction interface LMB read data bus

| Ready ILMB | Instruction interface LMB data ready

| Vai t ILMB | Instruction interface LMB data wait

| CE ILMB | Instruction interface LMB correctable error

| UE ILMB | Instruction interface LMB uncorrectable
error

M_AXI S_TLAST MO_AXIS.. 0 Master interface output AXI4 channels

M15_AXIS write last
Vh_AXI' S TDATA MO_AXIS.. o] Master interface output AXI14 channels
M15_AXIS write data

102

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

MicroBlaze I/0O Overview

Table 3-1: Summary of MicroBlaze Core 1/0 (Continued)

Signal Interface /0 Description
Wh_AXI'S TVALID MO_AXIS.. 0] Master interface output AX14 channels
M15_AXIS write valid
Wh_AXI S _TREADY MO_AXIS.. | Master interface input AXI14 channels
M15_AXIS write ready
Sn_AXI S_TLAST SO_AXIS.. | Slave interface input AXI14 channels
S15_AXIS write last
Sn_AXI S_TDATA S0_AXIS.. | Slave interface input AXI4 channels
S15_AXIS write data
Sn_AXI'S TVALID S0_AXIS.. | Slave interface input AXI4 channels
S15_AXIS write valid
Sn_AXI S_TREADY SO0_AXIS.. 0 Slave interface output AXI4 channels
S15 AXIS write ready
FSLO M .. FSL15 M MFSL 0] Master interface to output FSL channels
or MFSL is used for FSL bus connections,
DWFSL whereas DWFSL is used for direct
connections with FSL slaves
FSLO_S .. FSL15_S SFSL | Slave interface to input FSL channels
or SFSL is used for FSL bus connections,
DRFSL whereas DRFSL is used for direct
connections with FSL masters
| Cache_FSL_in. .. IXCL_S 10 Instruction side CacheLink FSL slave
interface
| Cache_FSL_out. .. IXCL_M 10 Instruction side CacheLink FSL master
interface
DCache FSL in... DXCL_S 10 Data side CacheLink FSL slave interface
DCache_FSL_out . .. DXCL_M I0 | Data side CacheLink FSL master interface
I nterrupt Core | Interrupt
Reset 1 Core | Core reset, active high. Should be held for at
least 1 Cl k clock cycle.
MB_Reset 1 Core | Core reset, active high. Should be held for at
least 1 Cl k clock cycle.
d k Core I Clock?
Ext _BRK Core | Break signal from MDM
Ext _NM BRK Core | Non-maskable break signal from MDM
MB_Hal t ed Core o] Pipeline is halted, either via the Debug
Interface or by setting Dbg_Stop

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

103

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-1: Summary of MicroBlaze Core 1/0 (Continued)

Signal Interface /0 Description

Dbg_St op Core | Unconditionally force pipeline to halt as

soon as possible. Rising-edge detected pulse
that should be held for at least 1 Clk clock
cycle. The signal only has any effect when
C_DEBUG_ENABLED is set to 1.

MB_Error Core O Pipeline is halted due to a missed exception,
when C_FAULT _TOLERANT is setto 1.

Lockstep_. .. Core 10 | Lockstep signals for high integrity
applications. See Table 3-10 for details.

Dbg ... Core I0 | Debug signals from MDM. See Table 3-12
for details.

Trace_. .. Core o] Trace signals for real time HW analysis. See

Table 3-13 for details.

The Reset and MB_Reset signals are functionally equivalent. MB_Reset is intended for the AX14 and PLB
interfaces.

. MicroBlaze is a synchronous design clocked with the Clk signal, except for hardware debug logic, which is

clocked with the Dbg_Clk signal. If hardware debug logic is not used, there is no minimum frequency limit for
Clk. However, if hardware debug logic is used, there are signals transferred between the two clock regions. In this
case Clk must have a higher frequency than Dbg_CIk.

AXI4 Interface Description

Memory Mapped Interfaces

Peripheral Interfaces

The MicroBlaze AX14 memory mapped peripheral interfaces are implemented as 32-bit masters.
Each of these interfaces only have a single outstanding transaction at any time, and all transactions
are completed in order.

The instruction peripheral interface (M_AXI_IP) only performs single word read accesses, and
is always set to use the AXI4-Lite subset.

The data peripheral interface (M_AXI_DP) performs single word accesses, and is set to use the
AXI4-Lite subset as default, but is set to use AXI4 when enabling exclusive access for LWX
and SWX instructions. Halfword and byte writes are performed by setting the appropriate byte
strobes.

Cache Interfaces

The AX14 memory mapped cache interfaces are implemented either as AXI4 32-bit, 128-bit, 256-
bit, or 512-bit masters, depending on cache line length and data width parameters.

With a 32-bit master, the instruction cache interface (M_AXI_IC) performs 4 word or 8 word
burst read accesses, depending on cache line length. With 128-bit, 256-bit, or 512-bit masters,
only single read accesses are performed.

This interface can have multiple outstanding transactions, issuing up to 2 transactions or up to
5 transactions when stream cache is enabled. The stream cache can request two cache lines in
advance, which means that in some cases 5 outstanding transactions can occur. When stream

104

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

AXIl4 Interface Description

cache isenabled, C_| NTERCONNECT _M AXI | C_READ | SSUI NGis setto 8, since it must
be a power of two.

How memory locations are accessed depend on the parameter C_| CACHE_ALWAYS_USED. If
the parameter is 1, the cached memory range is always accessed via the AXI14 cache interface.
If the parameter is 0, the cached memory range is accessed over the AXI4 periperal interface
when the caches are software disabled (that is, MSR[ICE]=0).

With a 32-bit master, the data cache interface (M_AXI_DC) performs single word accesses, as
well as 4 word or 8 word burst accesses, depending on cache line length. Burst write accesses
are only performed when using write-back cache. With 128-bit, 256-bit, or 512-bit masters,
only single accesses are performed.

This interface can have multiple outstanding transactions, either issuing up to 2 transactions
when reading, or up to 32 transactions when writing. MicroBlaze ensures that all outstanding
writes are completed before a read is issued, since the processor must maintain an ordered
memory model but AXI has separate read/write channels without any ordering. Using up to 32
outstanding write transactions improves performance, since it allows multiple writes to proceed
without stalling the pipeline.

Word, halfword and byte writes are performed by setting the appropriate byte strobes.
Exclusive accesses can be enabled for LWX and SWX instructions.

How memory locations are accessed depend on the parameter C_ DCACHE _ALWAYS USED. If
the parameter is 1, the cached memory range is always accessed via the AXI14 cache interface.
If the parameter is 0, the cached memory range is accessed over the AXI4 periperal interface
when the caches are software disabled (that is, MSR[DCE]=0).

Interface Parameters

The relationship between MicroBlaze parameter settings and AXI14 interface behavior for tool-

assigned parameters is summarized in Table 3-2.

Table 3-2: AXI Memory Mapped Interface Parameters

Interface Parameter

Description

M_AX1_DP | C_M_AXI_DP_PROTOCOL

AXI4-Lite: Default.

AXI4: Used to allow exclusive access when
C_M_AX1_DP_EXCLUSIVE_ACCESS s 1.

M_AXI_IC | C_M_AXI_IC_DATA_WIDTH

32: Default, single word accesses and burst
accesses with C_1CACHE_LINE_LEN word
busts used.

128: Used when C_1CACHE_DATA_WIDTH is
settoland C_ICACHE_LINE_LENissetto4.
Only single accesses can occur.

256: Used when C_ICACHE_DATA_WIDTH is
settoland C_ICACHE_LINE_ LEN iissetto8.
Only single accesses can occur.

512: Used when C_1CACHE_DATA_WIDTH is
set to 2. Only single accesses can occur.

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

105

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description & XILINX.

Table 3-2: AXI Memory Mapped Interface Parameters (Continued)

Interface Parameter Description

M_AXI1_DC | C_M_AXI1_DC_DATA WIDTH | 32: Default, single word accesses and burst
accesses with C_DCACHE_LINE_LEN word
busts used. Write bursts are only used when
C_DCACHE_USE_WRITEBACK issetto 1.

128: Used when C_DCACHE_DATA_WIDTH is
settoland C_DCACHE_LINE_LENissetto 4.
Only single accesses can occur.

256: Used when C_DCACHE_DATA_WIDTH is
settoland C_DCACHE_LINE_LENissetto8.
Only single accesses can occur.

512: Used when C_DCACHE_DATA_WIDTH is
set to 2. Only single accesses can occur.

M_AXI_IC | C_INTERCONNECT_M_AXI_ | 2: Default, 2 simultaneous outstanding reads.

1
IC_READ_ISSUING 8: Used when C_ICACHE_STREAMS is set to
1, allowing 8 simultaneous outstanding reads.

Canbesettol, 2, 4, 8.

M_AXI_DC | C_INTERCONNECT _M_AXI_ | 2: Default, 2 simultaneous outstanding reads.
DC_READ_ISSUING!

Can be setto 1 or 2.

M_AXI_DC | C_INTERCONNECT _M_AXI_ | 32: Default, 32 simultaneous outstanding
DC_WRITE_ISSUING? writes.

Canbesetto 1,2, 4, 8, 16, or 32.

1. This value can be explicitly set by the user to limit the number of simultaneous accesses accepted
by the AXI interconnect, which may lower performance but can reduce the interconnect size.

Please refer to the AMBA® AXI Protocol Specification, Version 2.0, ARM IHI 0022C document for
details.

Stream Interfaces

The MicroBlaze AXI14-Stream interfaces (MO_AXIS..M15_AXIS, SO_AXIS..S15 AXIS) are
implemented as 32-bit masters and slaves. Please refer to the AMBA®4 AXI14-Stream Protocol
Specification, Version 1.0, ARM IHI 0051A document for further details.

The Mh_AXI S_TLAST and Sn_AXI S_TLAST signals directly correspond to the equivalent
FSLn_M Control and FSLn_S_Cont r ol signals, respectively.

Write Operation

A write to the stream interface is performed by MicroBlaze using one of the put or putd instructions.
A write operation transfers the register contents to an output AXI4 interface. The transfer is
completed in a single clock cycle for blocking mode writes (put and cput instructions) as long as the
interface is not busy. If the interface is busy, the processor stalls until it becomes available. The non-
blocking instructions (with prefix n), always complete in a single clock cycle even if the interface is
busy. If the interface was busy, the write is inhibited and the carry bit is set in the MSR.

106

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Processor Local Bus (PLB) Interface Description

Read Operation

A read from the stream interface is performed by MicroBlaze using one of the get or getd

instructions. A read operations transfers the contents of an input AXI4 interface to a general purpose
register. The transfer is typically completed in 2 clock cycles for blocking mode reads as long as data
is available. If data is not available, the processor stalls at this instruction until it becomes available.
In the non-blocking mode (instructions with prefix n), the transfer is completed in one or two clock
cycles irrespective of whether or not data was available. In case data was not available, the transfer
of data does not take place and the carry bit is set in the MSR.

Processor Local Bus (PLB) Interface Description

The MicroBlaze PLB interfaces are implemented as byte-enable capable 32-bit masters. Please refer
to the IBM 128-Bit Processor Local Bus Architectural Specification (v4.6) document for details.

Local Memory Bus (LMB) Interface Description

The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a minimum
number of control signals and a simple protocol to ensure that local block RAM are accessed in a
single clock cycle. LMB signals and definitions are shown in the following table. All LMB signals

are active high.

LMB Signal Interface

Table 3-3: LMB Bus Signals

Signal Data Interface Ir:;:g:gizn Type Description
Addr [0: 31] Data_Addr[0:31] | Instr_Addr[0:31] O | Address bus
Byt e_Enabl e[0: 3] Byte Enable[0:3] not used Byte enables
Data_Wite[0: 31] Data_Write[0:31] not used O | Write data bus
AS D_AS I_AS O | Address strobe
Read_St robe Read_Strobe IFetch O | Read in progress
Wite Strobe Write_Strobe not used O | Write in progress
Dat a_Read[0: 31] Data_Read[0:31] Instr[0:31] | | Read data bus
Ready DReady IReady ! tFizzgfye :or next
Vi t 1 DWait Wait || aitundl ?ggg';ted
CEl DCE ICE | | Correctable error
UEL DUE IUE | | Uncorrectable error
a k Clk Clk | | Busclock

1. Added in LMB for MicroBlaze v8.00

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

107

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Addr[0:31]

The address bus is an output from the core and indicates the memory address that is being accessed
by the current transfer. It is valid only when AS is high. In multicycle accesses (accesses requiring
more than one clock cycle to complete), Addr [0: 31] is valid only in the first clock cycle of the
transfer.

Byte_Enable[0:3]

The byte enable signals are outputs from the core and indicate which byte lanes of the data bus
contain valid data. Byt e_Enabl e[0: 3] is valid only when AS is high. In multicycle accesses
(accesses requiring more than one clock cycle to complete), Byt e_Enabl e[0: 3] isvalid only in
the first clock cycle of the transfer. Valid values for Byt e _Enabl e[0: 3] are shown in the
following table:

Table 3-4: Valid Values for Byte_Enable[0:3]

Byte Lanes Used
Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]
0001 °
0010 °
0100 °
1000 °
0011 o °
1100
1111 ° [° °

Data_Write[0:31]

AS

The write data bus is an output from the core and contains the data that is written to memory. It is
valid only when AS is high. Only the byte lanes specified by Byt e_Enabl e[0: 3] contain valid
data.

The address strobe is an output from the core and indicates the start of a transfer and qualifies the
address bus and the byte enables. It is high only in the first clock cycle of the transfer, after which it
goes low and remains low until the start of the next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in progress. This signal
goes high in the first clock cycle of the transfer, and may remain high until the clock cycle after
Ready is sampled high. If a new read transfer is directly started in the next clock cycle, then
Read_ St r obe remains high.

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in progress. This
signal goes high in the first clock cycle of the transfer, and may remain high until the clock cycle

108

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

http://www.xilinx.com

& XILINX.

Local Memory Bus (LMB) Interface Description

after Ready is sampled high. If a new write transfer is directly started in the next clock cycle, then

Wi te_ Strobe remains high.

Data_Read[0:31]

The read data bus is an input to the core and contains data read from memory. Dat a_Read[0:31] is
valid on the rising edge of the clock when Ready is high.

Ready

Wait

CE

UE

Clk

The Ready signal is an input to the core and indicates completion of the current transfer and that the
next transfer can begin in the following clock cycle. It is sampled on the rising edge of the clock. For
reads, this signal indicates the Dat a_Read[0: 31] bus is valid, and for writes it indicates that the
Data_W it e[0: 31] bus has been written to local memory.

The Wi t signal is an input to the core and indicates that the current transfer has been accepted, but
not yet completed. It is sampled on the rising edge of the clock.

The CE signal is an input to the core and indicates that the current transfer had a correctable error. It
is valid on the rising edge of the clock when Ready is high. For reads, this signal indicates that an
error has been corrected on the Dat a_Read[0: 31] bus, and for byte and halfword writes it
indicates that the corresponding data word in local memory has been corrected before writing the
new data.

The UE signal is an input to the core and indicates that the current transfer had an uncorrectable
error. It is valid on the rising edge of the clock when Ready is high. For reads, this signal indicates
that the value of the Dat a_Read[0: 31] bus is erroneous, and for byte and halfword writes it
indicates that the corresponding data word in local memory was erroneous before writing the new
data.

All operations on the LMB are synchronous to the MicroBlaze core clock.

MicroBlaze Processor Reference Guide www.xilinx.com 109

UG081 (v13.4)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

LMB Transactions

The following diagrams provide examples of LMB bus operations.

Generic Write Operations

Clk 7 7 7 7 T
Addr : X—40 : X
Byte_Enable X BEO X
Data_Write : X DO . X

AS 4:/—'W

|
Read_Strobe :

Write_Strobe '/

Data_Read

Ready

Wait

CE

UE

i i

Figure 3-2: LMB Generic Write Operation, 0 Wait States

Clk S e I e TR e I e I e N

i A0 I
Addr | X | X /
Byte_Enable : X BEO : M
Data_Write : X DO . X /;

AS _:/—'W

|
Read_Strobe :

Write_Strobe >, \

Data_Read

Ready \
Wait / __ Don't Care \
|
CE ! \
|
UE . : \
' I
Figure 3-3: LMB Generic Write Operation, N Wait States
110 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX. Local Memory Bus (LMB) Interface Description

Generic Read Operations

Clk L] L L]
Addr . .

Byte_Enable

Data_Write

AS I S

I
|
I
1
T
. |
! 1
Read_Strobe / : \ N
! |
T
1
I
|
I
T
T
I

Write_Strobe

Data_Read X DO

Ready

Wait)) Don’t Care

CE

- - - - =<

UE

Figure 3-4: LMB Generic Read Operation, 0 Wait States

Clk B e I e IR e I I I e N

[! Iy L L
Addr X A0 ! / I I |
[I ” | | |
Byte_Enable ! ! [[[
! ! I I I
; ; //
Data_Write : : : : :
|
AS L/ N\ : : :
Read_Strobe | : } }
| | |
Write_Strobe : : : : :
| | /7 ! Il |
Data_Read I I //// L X DO L X 1
! ! | | |
Ready ! ! 1/ 1\ |
T T I | |
Wait ! L : _ Don'tCare ' \ !
i i T T
CE : : '/ i\ f
| | | |
UE ! ! L/ L\ |
Figure 3-5: LMB Generic Read Operation, N Wait States
MicroBlaze Processor Reference Guide www.xilinx.com 111

UG081 (v13.4)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description & XILINX.

Back-to-Back Write Operation

Clk | | | | | | | | | | | | | | | | | |
[l [l 1 / N [l / [l 1 1 [l
Addr : X___A0 | X Al | Xj/// : X A2 | Xj/// | X__A3 | X A4 : X :
Byte_Enable ™ BE0 ' {_ BE1 'YX/ X BE2 'YX/ ™ BE3 'Y BE4 'YX '
! ! el el i ! ! !
Data_Write X D0 , X D1 | Xj . X D2 | Xj 4 D3 X D4 X .
| | | | | | | |
AS / VY S o
: | |\t i | :
Read_Strobe : : : | : : : : :
|
Write_Strobe o, : : _//_:_/—:__/g L/ : A\ _,_I
| | | ! | | | | |
Data_Read | | | /// i | /// | I I I
]] | / | | /] | | |
Ready T N DN/
Wait f f /Don’t Calie/ : \Don't Cas'e/ : \ : Don't Care: : \
CE : A A L/ i i N\
UE I R R I I I n\
Figure 3-6: LMB Back-to-Back Write Operation
Back-to-Back Read Operation
Clk _ | | | | | | | | | | | | | | | | |
Addr A0 X AL /I Az Iy A5 A i) i
Byte_Enable : : : . // : : /. : : :
1 1 1 Iy 1 1 Iy 1 1 1 1
Data_Write I I I //// | I //// I I 1 1
| | | | I | | |
AS / /_'/—L |
: :] N : :
/ ! / / N
Read_Strobe : : : _//_I/—:_/ : : : :
Write_Strobe : : : : : : : : :
| | | ; | | ; | | | |
Data_Read D [D1 D2 D D4
ata Read IS D0 0@/ DO/ D2 (D8 O DI X
|
Ready L N\ N T
Wait I ' /Don’t Calie/ ; \Don’t Ca;‘;e/ : \ ' Don’t Care: ' \
| | | |
CE l L/ N\ / N\ L/ . . A\
|
UE I) Vs I I I n\
Figure 3-7: LMB Back-to-Back Read Operation
112 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Local Memory Bus (LMB) Interface Description

Back-to-Back Mixed Write/Read Operation

Cik [s FN s N s IR ms I s AN o
Addr : X A0 : X Al X A2 X ;
Byte_Enable X BEO : X : BE2 i X i
Data_Write X DO X : X D2 : X :
AS i : | n\ |
Read_Strobe i i /—i\ i i
Write_Strobe _:_/—:‘\—:_/—r\ |
Data_Read : : : X D1 : X :
Ready i i i i i \
Wait) ' ™ Don'tCare | N\
CE | | | | i\
UE | | I | A\

Figure 3-8: Back-to-Back Mixed Write/Read Operation, 0 Wait States

Clk ot 7 7 7 I 1]
Addr —C_A0 | ><j AL | Xj : A2 Xj :
Byte_Enable :X BEO : Xj : : : ¥ BE2 : Xj :
Data_Writ D07/ N/ G YRR O/
ata_Write :::X ! Xj/ i | I U
!
|

AS ST T N T Ny,

Read_Strobe :

Write_Strobe

I
I I I

Data_Read I I D1 |

ata_Rea | | // X | Xj/

I I I

Ready | | _//_/—I_//_/—\—

Wait I I / ; \Don't Caye : \Don’t Cag’e/ : \Don't Cal%e\

CE : : : A\ : . ' .
I I I I | I | I I

UE I I I 1\ L/ T\ L/ 1\ I

Figure 3-9: Back-to-Back Mixed Write/Read Operation, N Wait States

Read and Write Data Steering

The MicroBlaze data-side bus interface performs the read steering and write steering required to
support the following transfers:

e Dbyte, halfword, and word transfers to word devices
e byte and halfword transfers to halfword devices

e hyte transfers to byte devices

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

113

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

MicroBlaze does not support transfers that are larger than the addressed device. These types of
transfers require dynamic bus sizing and conversion cycles that are not supported by the MicroBlaze
bus interface. Data steering for read cycles is shown in Table 3-5, and data steering for write cycles
is shown in Table 3-6.

Table 3-5: Read Data Steering (Load to Register rD)

Register rD Data

A[gg:r?()els]s Byte[B:E?Sab'e Trg?zs;er rD[0:7] | rD[8:15] | rD[16:23] | rD[24:31]
11 0001 byte Byte3
10 0010 byte Byte2
01 0100 byte Bytel
00 1000 byte Byte0
10 0011 halfword Byte2 Byte3
00 1100 halfword Byte0 Bytel
00 1111 word ByteO Bytel Byte2 Byte3

Table 3-6: Write Data Steering (Store from Register rD)
Write Data Bus Bytes
Address |Byte_Enable| Transfer
[30:31] [0:3] Size Byte0 Bytel Byte2 Byte3

11 0001 byte rD[24:31]
10 0010 byte rD[24:31]
01 0100 byte rD[24:31]
00 1000 byte rD[24:31]
10 0011 halfword rD[16:23] | rD[24:31]
00 1100 halfword | rD[16:23] | rD[24:31]
00 1111 word rD[0:7] | rD[8:15] | rD[16:23] | rD[24:31]

Note: Other masters may have more restrictive requirements for byte lane placement than those
allowed by MicroBlaze. Slave devices are typically attached “left-justified” with byte devices attached
to the most-significant byte lane, and halfword devices attached to the most significant halfword lane.
The MicroBlaze steering logic fully supports this attachment method.

Fast Simplex Link (FSL) Interface Description

The Fast Simplex Link bus provides a point-to-point communication channel between an output
FIFO and an input FIFO. For more information on the generic FSL protocol, see the Fast Simplex
Link (FSL) Bus (DS449) data-sheet in the Xilinx EDK IP Documentation.

114

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

http://www.xilinx.com

& XILINX.

Fast Simplex Link (FSL) Interface Description

Master FSL Signal Interface

MicroBlaze may contain up to 16 master FSL interfaces. The master signals are depicted in

Table 3-7.
Table 3-7: Master FSL Signals
Sighal Name Description VHDL Type Direction
FSLn_M d k Clock std_logic input
FSLn_ M Wite Write enable signal indicating output
that data is being written to the std_logic
output FSL
FSLn_M Dat a Data value written to the output . output
std_logic_vector
FSL
FSLn_M Cont r ol Control bit value written to the . output
std_logic
output FSL
FSLn_M Ful | Full Bit indicating output FSL std logic input
FIFO is full when set 109

Slave FSL Signal Interface

MicroBlaze may contain up to 16 slave FSL interfaces. The slave FSL interface signals are depicted

in Table 3-8.
Table 3-8: Slave FSL Signals
Signal Name Description VHDL Type Direction
FSLn_S d k Clock std_logic input
FSLn_S Read Read acknowledge signal std_logic output
indicating that data has been
read from the input FSL
FSLn_S Data Data value currently available at | std_logic_vector input
the top of the input FSL
FSLn_S Contr ol Control Bit value currently std_logic input
available at the top of the input
FSL
FSLn_S Exists Flag indicating that data exists std_logic input
in the input FSL

FSL Transactions

FSL BUS Write Operation

A write to the FSL bus is performed by MicroBlaze using one of the put or putd instructions. A write
operation transfers the register contents to an output FSL bus. The transfer is completed in a single
clock cycle for blocking mode writes to the FSL (put and cput instructions) as long as the FSL FIFO
does not become full. If the FSL FIFO is full, the processor stalls until the FSL full flag is lowered.
The non-blocking instructions (with prefix n), always complete in a single clock cycle even if the
FSL was full. If the FSL was full, the write is inhibited and the carry bit is set in the MSR.

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

115

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description & XILINX.

FSL BUS Read Operation

A read from the FSL bus is performed by MicroBlaze using one of the get or getd instructions. A
read operations transfers the contents of an input FSL to a general purpose register. The transfer is
typically completed in 2 clock cycles for blocking mode reads from the FSL as long as data exists in
the FSL FIFO. If the FSL FIFO is empty, the processor stalls at this instruction until the FSL exists
flag is set. In the non-blocking mode (instructions with prefix n), the transfer is completed in one or
two clock cycles irrespective of whether or not the FSL was empty. In the case the FSL was empty,
the transfer of data does not take place and the carry bit is set in the MSR.

Direct FSL Connections

A direct FSL connection can be used to avoid the need for the FSL bus. This can be useful in case
no buffering is needed between the two connected IP cores, since the FSL bus FIFO is not included
with a direct connection. No buffering reduces the communication latency and required
implementation resources.

Each of the MicroBlaze FSL interfaces can either use a direct FSL connection or an FSL bus.

A MicroBlaze DWFSL interface is the initiator on a direct FSL connection, which can only be
connected to a DWFSL target. The DWFSL initiator and target have exactly the same signal names,
identical to the MFSL signals, depicted in Table 3-7. MicroBlaze uses the DWFSL interface to write
data to the target with one of the put or putd instructions.

A MicroBlaze DRFSL interface is the target on a direct FSL connection, which can only be
connected to a DRFSL initiator. The DRFSL initiator and target have exactly the same signal names,
identical to the SFSL signals, depicted in Table 3-8. MicroBlaze uses the DRFSL interface to read
data from the initiator with one of the get or getd instructions.

The Xilinx CacheLink (XCL) interface is implemented with direct FSL connections.

Xilinx CacheLink (XCL) Interface Description

Xilinx CacheLink (XCL) is a high performance solution for external memory accesses. The
MicroBlaze CacheLink interface is designed to connect directly to a memory controller with
integrated FSL buffers, for example, the MPMC. This method has the lowest latency and minimal
number of instantiations (see Figure 3-10).

116

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Xilinx CacheLink (XCL) Interface Description

Schematic Example MHS code
BEGIN microblaze
Memory BUS_INTERFACE IXCL = myIXCL
Controller
END
| - BEGIN mpmc
(2] wn
L L
BUS_INTERFACE XCLO = myIXCL
A
END
v
MicroBlaze

Figure 3-10: CacheLink Connection with Integrated FSL Buffers
(Only Instruction Cache Used in this Example)

The interface is only available on MicroBlaze when caches are enabled. It is legal to use a
CacheL.ink cache on the instruction side or the data side without caching the other.

How memory locations are accessed depend on the parameter C_| CACHE_ALWAYS USED for the
instruction cache and the parameter C_DCACHE_ALWAYS USED for the data cache. If the
parameter is 1, the cached memory range is always accessed via the CacheL.ink. If the parameter is
0, the cached memaory range is accessed over PLB whenever the caches are software disabled (that
is, MSR[ICE]=0 or MSR[DCE]=0).

Memory locations outside the cacheable range are accessed over AXI, PLB or LMB.

The CacheLink cache controllers handle 4 or 8-word cache lines, either using critical word first or
linear fetch depending on the selected protocol. At the same time the separation from the AXI4 or
PLB bus reduces contention for non-cached memory accesses.

CacheLink Signal Interface

The CacheLink signals on MicroBlaze are listed in Table 3-9.
Table 3-9: MicroBlaze Cache Link Signals

Signal Name Description VHDL Type |Direction
| CACHE_FSL_I N d k Clock output to I-side return | std_logic output
read data FSL
| CACHE FSL I N Read Read signal to I-side return std_logic output
read data FSL.
| CACHE_FSL_I N Dat a Read data from I-side return | std_logic_ input
read data FSL vector (0 to 31)
MicroBlaze Processor Reference Guide www.xilinx.com 117

UG081 (v13.4)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-9: MicroBlaze Cache Link Signals
Signal Name Description VHDL Type |Direction

| CACHE_FSL_I N _Contr ol FSL control-bit from I-side std_logic input
return read data FSL.
Reserved for future use

| CACHE FSL I N Exists More read data exists in I-side | std_logic input
return FSL

| CACHE_FSL_OUT_d k Clock output to I-side read std_logic output
access FSL

| CACHE_FSL_QUT Wite Write new cache miss access | std_logic output
request to I-side read access
FSL

| CACHE_FSL_QUT_Dat a Cache miss access (=address) | std_logic output

to I-side read access FSL

vector (0?0 31)

| CACHE_FSL_QOUT_Cont r ol FSL control-bit to I-side read | std_logic output
access FSL. Reserved for
future use

| CACHE_FSL_QUT Ful | FSL access buffer for I-side std_logic input
read accesses is full

DCACHE FSL I N d k Clock output to D-side return | std_logic output
read data FSL

DCACHE_FSL_|I N_Read Read signal to D-side return | std_logic output
read data FSL

DCACHE_FSL_I N Dat a Read data from D-side return | std_logic_ input

read data FSL

vector (0 to 31)

DCACHE_FSL_I N Control FSL control bit from D-side | std_logic input
return read data FSL

DCACHE FSL_I N Exi sts More read data exists in D- std_logic input
side return FSL

DCACHE FSL_OUT _d k Clock output to D-side read std_logic output
access FSL

DCACHE_FSL_QOUT _Wite Write new cache miss access | std_logic output
request to D-side read access
FSL

DCACHE_FSL_OQUT Dat a Cache miss access (read std_logic_ output

address or write address +
write data + byte write enable
+ burst write encoding) to D-
side read access FSL

vector (0 to 31)

118

www.xilinx.com

MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Xilinx CacheLink (XCL) Interface Description

Table 3-9: MicroBlaze Cache Link Signals

Signal Name Description VHDL Type |Direction

DCACHE FSL_OUT Contr ol FSL control-bit to D-side read | std_logic output
access FSL. Used with
address bits [30 to 31] for
read/write, byte enable and
burst write encoding.

DCACHE_FSL_OUT_Ful | FSL access buffer for D-side | std_logic input
read accesses is full

CachelLink Transactions

All individual CacheLink accesses follow the FSL FIFO based transaction protocol:

e Access information is encoded over the FSL data and control signals (e.g.
DCACHE_FSL_QUT_Dat a, DCACHE_FSL_QUT_Control ,| CACHE_FSL_I N_Dat a,
and | CACHE_FSL_I N _Control)

o Information is sent (stored) by raising the write enable signal (e.g.
DCACHE_FSL_QOUT Wite)

e The sender is only allowed to write if the full signal from the receiver is inactive (e.g.
DCACHE_FSL_QUT_Ful | =0). The full signal is not used by the instruction cache
controller.

e Theuseof | CACHE_FSL_I N Read and DCACHE FSL_I N _Read depends on the
selected interface protocol:

+ With the IXCL and DXCL protocol, information is received (loaded) by raising the read
signal. The signal is low, except when the sender signals that new data exists.

¢ With the IXCL2 and DXCLZ2 protocol, lowering the read signal indicates that the receiver
is not able to accept new data. New data is only read when the read signal is high, and the
sender signals that data exists. Once a burst read has started, the read signal is not lowered.

e The receiver is only allowed to read as long as the sender signals that new data exists (e.g.
| CACHE_FSL_I N_Exi sts =1)

For details on the generic FSL protocol, please see the Fast Simplex Link (FSL) Bus (DS449) data-
sheet in the Xilinx EDK IP Documentation.

The CacheLink solution uses one incoming (slave) and one outgoing (master) FSL per cache
controller. The outgoing FSL is used to send access requests, while the incoming FSL is used for
receiving the requested cache lines. CacheLink also uses a specific encoding of the transaction
information over the FSL data and control signals.

The cache lines used for reads in the CacheLink protocol are 4 or 8 words long. Each cache line is
either fetched with the critical word first, or in linear order, depending on the selected interface
protocol.

e Critical word first is used by the IXCL and DXCL protocol, selected when
C_| CACHE_| NTERFACE = 0 (IXCL) and C_DCACHE_| NTERFACE = 0 (DXCL),
respectively. Each cache line is expected to start with the critical word first (that is, if an access
to address 0x348 is a miss with a 4 word cache line, then the returned cache line should have
the following address sequence: 0x348, 0x34c, 0x340, 0x344). The cache controller forwards
the first word to the execution unit as well as stores it in the cache memory. This allows
execution to resume as soon as the first word is back. The cache controller then follows
through by filling up the cache line with the remaining 3 or 7 words as they are received.

MicroBlaze Processor Reference Guide www.xilinx.com 119

UG081 (v13.4)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description & XILINX.

e Linear fetch is used by the IXCL2 and DXCL2 protocol, selected when
C_| CACHE_| NTERFACE =1 (IXCL2) and C_DCACHE_| NTERFACE = 1 (DXCL2),
respectively. The address output on the CacheLink is then aligned to the cache line size (that is,
if an access to address 0x348 is a miss with a 4 word cache line, then the address output on the
CacheLink is 0x340). The cache controller stores data in the cache memory, and forwards the
requested word to the execution unit when it is available.

When the parameter C_DCACHE_USE_WRI TEBACK s set to 1, write operations can store an
entire cache line using burst write, as well as single-words. Each cache line is always stored in linear
order, and the address output on the CacheL.ink is aligned to the cache line size. When the parameter
C _DCACHE_USE_WRI TEBACK is cleared to 0, all write operations on the CacheL.ink are single-
word. C_DCACHE_| NTERFACE must be set to 1 (DXCL2) when write-back is used, since burst
write is only available with the DXCL2 protocol.

Instruction Cache Read Miss

On a read miss the cache controller performs the following sequence:

1. Write the word aligned® or cache line aligned missed address to | CACHE_FSL_QUT_Dat a,
with the control bit set low (| CACHE_FSL_QOUT_Cont r ol =0) to indicate a read access

2. Waituntil | CACHE_FSL_| N_Exi st s goes high to indicate that data is available

Note: There must be at least one clock cycle before | CACHE_FSL_| N_Exi st s goes high (that is,
at least one wait state must be used).

With the IXCL protocol (critical word first):

3. Store the word from | CACHE_FSL_| N_Dat a to the cache

4. Forward the critical word to the execution unit in order to resume execution
5. Repeat 3 and 4 for the subsequent 3 or 7 words in the cache line

With the IXCL2 protocol (linear fetch):

3. Store words from | CACHE_FSL_| N_Dat a to the cache

4. Forward the relevant word to the execution unit in order to resume execution
5. Store remaining words from | CACHE_FSL_| N_Dat a to the cache

Data Cache Read Miss

On a read miss the cache controller will perform the following sequence:

1. If DCACHE_FSL_OUT_Ful | =1 then stall until it goes low

2. Write the word aligned? or cache line aligned missed address to DCACHE_FSL_QUT _Dat a,
with the control bit set low (DCACHE_FSL_OUT_Cont r ol =0) to indicate a read access

3. Wait until DCACHE_FSL_| N_Exi st s goes high to indicate that data is available

Note: There must be at least one clock cycle before DCACHE_FSL_| N_Exi st s goes high (that is,
at least one wait state must be used).

With the DXCL protocol (critical word first):

4. Store the word from DCACHE_FSL_| N_Dat a to the cache

5. Forward the critical word to the execution unit in order to resume execution
6. Repeat 4 and 5 for the subsequent 3 or 7 words in the cache line

1. Byte and halfword read misses are naturally expected to return complete words, the cache controller then provides the
execution unit with the correct bytes.

120

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Xilinx CacheLink (XCL) Interface Description

With the DXCL2 protocol (linear fetch):

4. Store words from DCACHE_FSL_| N_Dat a to the cache
5. Forward the requested word to the execution unit in order to resume execution
6. Store remaining words from DCACHE_FSL_| N_Dat a to the cache

Data Cache Write

When C_DCACHE | NTERFACE is set to 1 (DXCL2), the CacheLink can either do burst write or
single-word write.

A burst write is used when C_DCACHE_USE_WRI TEBACK is set to 1 and an entire cache line is
valid. There are two occasions when an entire cache line becomes valid:

e If acache miss occurs for a load instruction or byte/halfword store instruction, which causes
the entire cache line to be read into the cache with a burst read.

e All words in the cache line have been written with word store instructions.

Note that writes to the data cache always are write-through when C_DCACHE_USE_WRI TEBACK
is cleared to 0, and thus there is a write over the CacheLink regardless of whether there was a hit or
miss in the cache.

With the DXCLZ2 protocol, on a burst cache line write, the cache controller performs the following
sequence:

1. If DCACHE_FSL_QUT_Ful | =1 then stall until it goes low

2. Write the cache aligned address to DCACHE_FSL__QUT_Dat a, with the control bit set high
(DCACHE_FSL_QUT_Cont r ol =1)to indicate a write access. The two least-significant bits
(30:31) of the address are used to encode burst access: 0b10=burst. To separate a burst access
from a single byte-write, the control bit for the first data word in step 4 is low for a burst access
(DCACHE_FSL_QUT_Control =0).

If DCACHE_FSL_QUT_Ful | =1 then stall until it goes low

4. Write the data to be stored to DCACHE_FSL_QOUT_Dat a. The control bit is low
(DCACHE_FSL_QOUT_Cont r ol =0) for a burst access.

5. Repeat 3 and 4 for the subsequent words in the cache line.

With either the DXCL or DXCL2 protocol, on a single-word write, the cache controller performs the
following sequence:

1. If DCACHE_FSL_OUT_Ful | =1 then stall until it goes low

2. Write the missed address to DCACHE_FSL_QUT_Dat a, with the control bit set high
(DCACHE_FSL_CQUT_Cont r ol =1) to indicate a write access. The two least-significant bits
(30:31) of the address are used to encode byte and half-word enables: 0b00=byte0, 0b01=bytel
or halfword0, 0x10=byte2, and 0x11=byte3 or halfwordl. The selection of half-word or byte
access is based on the control bit for the data word in step 4.

If DCACHE _FSL_QUT_Ful | =1 then stall until it goes low

4. Write the data to be stored to DCACHE_FSL__OUT_Dat a. For byte and halfword accesses the
data is mirrored onto byte-lanes. Mirroring outputs the byte or halfword to be written on all four
byte-lanes or on both halfword-lanes, respectively. The control bit should be low
(DCACHE_FSL_QUT_Cont r ol =0) foraword or halfword access, and high for a byte access
to separate it from a burst access. Word or halfword accesses can be distinguished by the least
significant bit of the address (0=word and 1=halfword).

MicroBlaze Processor Reference Guide www.xilinx.com 121
UG081 (v13.4)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Lockstep Interface Description

The lockstep interface on MicroBlaze is designed to connect a master and one or more slave
MicroBlaze instances. The lockstep signals on MicroBlaze are listed in Table 3-10.

Table 3-10: MicroBlaze Lockstep Signals

Signal Name Description VHDL Type Direction
Lockst ep_Mast er _Qut | Output with signals going from | std_logic output
master to slave MicroBlaze. Not
connected on slaves.
Lockstep_Slave_In Input with signals coming from | std_logic input
master to slave MicroBlaze. Not
connected on master.
Lockst ep_Qut Output with all comparison std_logic output
signals from both master and
slaves.
The comparison signals provided by Lockst ep_Qut are listed in Table 3-11.
Table 3-11: MicroBlaze Lockstep Comparison Signals
Signhal Name Bus Index Range VHDL Type
MB_Halted 0 std_logic
MB_Error 1 std_logic
IFetch_POS 2 std_logic
I_AS_POS 3 std_logic
Instr_Addr 41035 std_logic_vector
Data_Addr 36 to 67 std_logic_vector
Data Write 68 to 99 std_logic_vector
D_AS 100 std_logic
Read_Strobe 101 std_logic
Write_Strobe 102 std_logic
Byte Enable 103 to 106 std_logic_vector
IPLB_M ABort 107 std_logic
IPLB_M_busLock 108 std_logic
IPLB_M_lockErr 109 std_logic
IPLB_M_rdBurst 110 std_logic
IPLB_M_request 111 std_logic
IPLB_M_RNW 112 std_logic
IPLB_M_wrBurst 113 std_logic
IPLB_M MSize 114 to 115 std_logic_vector
IPLB_M_priority 116 to 117 std_logic_vector
IPLB_M_ABus 118 to 149 std_logic_vector
IPLB_M_ UABus 150 to 181 std_logic_vector
IPLB_M_BE1 182 to 197 std_logic_vector

122

www.xilinx.com

MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Lockstep Interface Description

Table 3-11: MicroBlaze Lockstep Comparison Signals

Signal Name

Bus Index Range

VHDL Type

IPLB M size 198 to 201 std_logic_vector
IPLB_M TAttribute 202 to 217 std_logic_vector
IPLB_M_type 218 t0 220 std_logic_vector
IPLB_M wrDBus? 221 to 348 std_logic_vector
DPLB_M_ABort 349 std_logic
DPLB_M_busLock 350 std_logic
DPLB_M_lockErr 351 std_logic
DPLB_M_rdBurst 352 std_logic
DPLB_M_request 353 std_logic
DPLB_M_RNW 354 std_logic
DPLB_M_wrBurst 355 std_logic
DPLB_M_ABus 356 to 387 std_logic_vector
DPLB_M_UABus 38810419 std_logic_vector
DPLB_M BE! 420 to 435 std_logic_vector
DPLB_M_MSize 436 to 437 std_logic_vector
DPLB_M_priority 438 to 439 std_logic_vector
DPLB_M_size 440 to 443 std_logic_vector
DPLB_M_TAttribute 444 to 459 std_logic_vector
DPLB_M_type 460 to 462 std_logic_vector
DPLB_M_wrDBus!? 463 to 590 std_logic_vector
ICACHE_FSL_IN_ClIk 591 std_logic
ICACHE_FSL_IN_Read 592 std_logic
ICACHE_FSL_OUT_CIk 593 std_logic
ICACHE_FSL_OUT Write 594 std_logic
ICACHE_FSL_OUT_Data 595 to 626 std_logic_vector
ICACHE_FSL_OUT_Control 627 std_logic
DCACHE_FSL_IN_CIk 628 std_logic
DCACHE_FSL_IN_Read 629 std_logic
DCACHE_FSL_OUT_CIk 630 std_logic
DCACHE_FSL_OUT_Write 631 std_logic
DCACHE_FSL_OUT_Data 632 to 663 std_logic_vector
DCACHE_FSL_OUT_Control 664 std_logic
M_AXI_IP_AWID 665 std_logic
M_AXI1_IP_AWADDR 666 to 697 std_logic_vector
M_AXI1_IP_AWLEN 698 to 705 std_logic_vector
M_AX1_IP_AWSIZE 706 to 708 std_logic_vector
M_AXI_IP_AWBURST 709 to 710 std_logic_vector
M_AX1_IP_AWLOCK 711 std_logic

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

123

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-11: MicroBlaze Lockstep Comparison Signals

Signal Name Bus Index Range VHDL Type
M_AXI1_IP_AWCACHE 712 to 715 std_logic_vector
M_AXI_IP_AWPROT 716 to 718 std_logic_vector
M_AXI1_IP_AWQOS 719 to 722 std_logic_vector
M_AX1_IP_AWVALID 723 std_logic
M_AXI1_IP_WDATA 724 t0 755 std_logic_vector
M_AX1_IP_WSTRB 756 to 759 std_logic_vector
M_AX1_IP_WLAST 760 std_logic
M_AX1_IP_WVALID 761 std_logic
M_AX1_IP_BREADY 762 std_logic
M_AX1_IP_ARID 763 std_logic
M_AXI1_IP_ARADDR 764 to 795 std_logic_vector
M_AX1_IP_ARLEN 796 to 803 std_logic_vector
M_AXI1_IP_ARSIZE 804 to 806 std_logic_vector
M_AXI_IP_ARBURST 807 to 808 std_logic_vector
M_AX1_1P_ARLOCK 809 std_logic
M_AX1_1P_ARCACHE 810 to 813 std_logic_vector
M_AX1_IP_ARPROT 814 to0 816 std_logic_vector
M_AXI1_IP_ARQOS 817 to 820 std_logic_vector
M_AXI1_IP_ARVALID 821 std_logic
M_AXI1_IP_RREADY 822 std_logic
M_AXI_DP_AWID 823 std_logic
M_AXI1_DP_AWADDR 824 to 855 std_logic_vector
M_AX1_DP_AWLEN 856 to 863 std_logic_vector
M_AXI1_DP_AWSIZE 864 to 866 std_logic_vector
M_AX1_DP_AWBURST 867 to 868 std_logic_vector
M_AXI_DP_AWLOCK 869 std_logic
M_AXI1_DP_AWCACHE 870 to 873 std_logic_vector
M_AXI1_DP_AWPROT 874 to 876 std_logic_vector
M_AXI1_DP_AWQOS 877 to 880 std_logic_vector
M_AX1_DP_AWVALID 881 std_logic
M_AXI1_DP_WDATA 882 to 913 std_logic_vector
M_AX1_DP_WSTRB 914 to 917 std_logic_vector
M_AX1_DP_WLAST 918 std_logic
M_AX1_DP_WVALID 919 std_logic
M_AX1_DP_BREADY 920 std_logic
M_AX1_DP_ARID 921 std_logic
M_AXI1_DP_ARADDR 922 to 953 std_logic_vector
M_AXI1_DP_ARLEN 954 to 961 std_logic_vector

124

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Lockstep Interface Description

Table 3-11: MicroBlaze Lockstep Comparison Signals

Signal Name

Bus Index Range

VHDL Type

M_AXI_DP_ARSIZE 962 to 964 std_logic_vector
M_AXI1_DP_ARBURST 965 to 966 std_logic_vector
M_AX1_DP_ARLOCK 967 std_logic
M_AXI1_DP_ARCACHE 968 to 971 std_logic_vector
M_AXI1_DP_ARPROT 972 to 974 std_logic_vector
M_AXI1_DP_ARQOS 97510 978 std_logic_vector
M_AX1_DP_ARVALID 979 std_logic
M_AX1_DP_RREADY 980 std_logic
FSLn_S CIk 981 +n*37 std_logic
FSLn_S Read 982 +n * 37 std_logic
FSLn_M_CIk 983 +n * 37 std_logic
FSLn_M Write 984 +n* 37 std_logic
FSLn_M Data 985+ n * 37 to 1016 + n * 37 std_logic_vector
FSLn_M_Control 1017 +n * 37 std_logic
Mn_AXIS_TLAST 1573 +n* 35 std_logic
Mn_AXI1S_TDATA 1574+ n*351t0 1606 + n * 35 | std_logic_vector
Mn_AXI1S_TVALID 1607 +n* 35 std_logic
Sn_AX1S_TREADY 1608 + n * 35 std_logic
M_AXI1_IC_AWID 2133 std_logic
M_AXI_I1C_AWADDR 2134 t0 2165 std_logic_vector
M_AXI1_IC_AWLEN 2166 to 2173 std_logic_vector
M_AXI_IC_AWSIZE 2174 t0 2176 std_logic_vector
M_AX1_IC_AWBURST 2177 t0 2178 std_logic_vector
M_AXI1_1C_AWLOCK 2179 std_logic
M_AXI_IC_AWCACHE 2180 to 2183 std_logic_vector
M_AXI_IC_AWPROT 2184 to 2186 std_logic_vector
M_AXI_IC_AWQOS 2187 to 2190 std_logic_vector
M_AX1_IC_AWVALID 2191 std_logic
M_AXI1_IC_AWUSER 2192 to 2196 std_logic_vector
M_AXI_IC_WDATAl 2197 to 2708 std_logic_vector
M_AXI_I1C_WSTRB?! 2709 to 2772 std_logic_vector
M_AX1_IC_WLAST 2773 std_logic
M_AX1_IC_WVALID 2774 std_logic
M_AXI1_IC_WUSER 2775 std_logic
M_AX1_IC_BREADY 2776 std_logic
M_AX1_IC_ARID 2777 std_logic_vector
M_AXI1_IC_ARADDR 2778 to 2809 std_logic_vector
M_AXI1_IC_ARLEN 2810 to 2817 std_logic_vector

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

125

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-11: MicroBlaze Lockstep Comparison Signals

Signal Name

Bus Index Range

VHDL Type

M_AXI_IC_ARSIZE 2818 to 2820 std_logic_vector
M_AXI1_IC_ARBURST 2821 to 2822 std_logic_vector
M_AXI1_IC_ARLOCK 2823 std_logic
M_AXI1_IC_ARCACHE 2824 to 2827 std_logic_vector
M_AXI_IC_ARPROT 2828 to 2830 std_logic_vector
M_AXI_IC_ARQOS 2831 to 2834 std_logic_vector
M_AX1_IC_ARVALID 2835 std_logic
M_AXI_IC_ARUSER 2836 to 2840 std_logic_vector
M_AX1_IC_RREADY 2841 std_logic
M_AX1_DC_AWID 2842 std_logic
M_AXI1_DC_AWADDR 2843 to 2874 std_logic_vector
M_AX1_DC_AWLEN 2875 to 2882 std_logic_vector
M_AX1_DC_AWSIZE 2883 to 2885 std_logic_vector
M_AXI_DC_AWBURST 2886 to 2887 std_logic_vector
M_AX1_DC_AWLOCK 2888 std_logic
M_AX1_DC_AWCACHE 2889 to 2892 std_logic_vector
M_AX1_DC_AWPROT 2893 to 2895 std_logic_vector
M_AX1_DC_AWQOS 2896 to 2899 std_logic_vector
M_AX1_DC_AWVALID 2900 std_logic
M_AX1_DC_AWUSER 2901 to 2905 std_logic_vector
M_AX1_DC_WDATAl 2906 to 3417 std_logic_vector
M_AXI_DC_WSTRB! 3418 to 3481 std_logic_vector
M_AX1_DC_WLAST 3482 std_logic
M_AX1_DC_WVALID 3483 std_logic
M_AXI_DC_WUSER 3484 std_logic
M_AX1_DC_BREADY 3485 std_logic
M_AX1_DC_ARID 3486 std_logic
M_AX1_DC_ARADDR 3487 to 3518 std_logic_vector
M_AXI1_DC_ARLEN 3519 to 3526 std_logic_vector
M_AX1_DC_ARSIZE 3527 to 3529 std_logic_vector
M_AXI1_DC_ARBURST 3530 to 3531 std_logic_vector
M_AX1_DC_ARLOCK 3532 std_logic
M_AX1_DC_ARCACHE 3533 to 3536 std_logic_vector
M_AXI1_DC_ARPROT 3537 to 3539 std_logic_vector
M_AXI1_DC_ARQOS 3540 to 3543 std_logic_vector
M_AX1_DC_ARVALID 3544 std_logic
M_AX1_DC_ ARUSER 3545 to 3549 std_logic_vector
M_AX1_DC_RREADY 3550 std_logic

126

www.xilinx.com

MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Lockstep Interface Description

Table 3-11: MicroBlaze Lockstep Comparison Signals

Signal Name

Bus Index Range

VHDL Type

Trace_Instruction 3551 to 3582 std_logic_vector
Trace_Valid_Instr 3583 std_logic
Trace PC 3584 to 3615 std_logic_vector
Trace_Reg_Write 3616 std_logic
Trace_Reg_Addr 3617 to 3621 std_logic_vector
Trace_ MSR_Reg 3622 to 3636 std_logic_vector
Trace PID_Reg 3637 to 3644 std_logic_vector
Trace_New_Reg Value 3645 to 3676 std_logic_vector
Trace_Exception_Taken 3677 std_logic
Trace_Exception_Kind 3678 to 3682 std_logic_vector
Trace_Jump_Taken 3683 std_logic
Trace_Delay_Slot 3684 std_logic
Trace_Data_Address 3685 to 3716 std_logic_vector
Trace Data Write Value 3717 to 3748 std_logic_vector
Trace Data Byte Enable 3749 to 3752 std_logic_vector
Trace_Data_Access 3753 std_logic
Trace Data Read 3754 std_logic
Trace_Data_Write 3755 std_logic
Trace_DCache_Req 3756 std_logic
Trace DCache Hit 3757 std_logic
Trace_DCache_Rdy 3758 std_logic
Trace_DCache_Read 3759 std_logic
Trace_ICache_Req 3760 std_logic
Trace_ICache Hit 3761 std_logic
Trace_I1Cache_Rdy 3762 std_logic
Trace_OF_PipeRun 3763 std_logic
Trace EX_PipeRun 3764 std_logic
Trace_MEM_PipeRun 3765 std_logic
Trace MB Halted 3766 std_logic
Trace_Jump_Hit 3767 std_logic
Reserved for future use 3768 to 4095

1. This field accommodates the maximum signal width. The part used in the comparison extends from the lowest

numbered bit.to the actual signal width.

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

127

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description & XILINX.

Debug Interface Description

The debug interface on MicroBlaze is designed to work with the Xilinx Microprocessor Debug
Module (MDM) IP core. The MDM is controlled by the Xilinx Microprocessor Debugger (XMD)
through the JTAG port of the FPGA. The MDM can control multiple MicroBlaze processors at the
same time. The debug signals are grouped in the DEBUG bus. The debug signals on MicroBlaze are
listed in Table 3-12.

Table 3-12: MicroBlaze Debug Signals

Signal Name Description VHDL Type Direction
Dbg Ok JTAG clock from MDM std_logic input
Dbg_ TDI JTAG TDI from MDM std_logic input
Dbg_TDO JTAG TDO to MDM std_logic output
Dbg_Reg_En Debug register enable from std_logic input
MDM

Dbg_Shiftl JTAG BSCAN shift signal from | std_logic input
MDM

Dbg Capture JTAG BSCAN capture signal std_logic input
from MDM

Dbg_Updat e JTAG BSCAN update signal std_logic input
from MDM

Debug_Rst 1 Reset signal from MDM, active | std_logic input
high. Should be held for at least
1 d k clock cycle.

1. Updated for MicroBlaze v7.00: Dbg_Shift added and Debug_Rst included in DEBUG bus

Trace Interface Description

The MicroBlaze core exports a number of internal signals for trace purposes. This signal interface is
not standardized and new revisions of the processor may not be backward compatible for signal

selection or functionality. It is recommended that you not design custom logic for these signals, but
rather to use them via Xilinx provided analysis IP. The trace signals are grouped in the TRACE bus.
The current set of trace signals were last updated for MicroBlaze v7.30 and are listed in Table 3-13.
The Trace exception types are listed in Table 3-14. All unused Trace exception types are reserved.

Table 3-13: MicroBlaze Trace Signals

Signal Name Description VHDL Type Direction
Trace_Valid_ Instr Valid instruction on trace port. std_logic output
Trace_Instruction!? Instruction code std_logic_vector (0 to 31) | output
Trace_PC! Program counter std_logic_vector (0 to 31) | output
Trace_Reg Witel Instruction writes to the register file std_logic output
Trace_Reg Addr 1 Destination register address std_logic_vector (0 to 4) | output
Trace_MSR_Reg!l Machine status register std_logic_vector (0 to 14)2 | output
Trace_PI D Regl? Process identifier register std_logic_vector (0to 7) | output

128

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Trace Interface Description

Table 3-13: MicroBlaze Trace Signals

Signal Name Description VHDL Type Direction
Trace_New Reg Val uel Destination register update value std_logic_vector (0 to 31) | output
Trace_Exception_Taken! Instruction result in taken exception std_logic output
Trace_Exception_Ki ndl3 Exception type. The description for the std_logic_vector (0 to 4)2 | output

exception type is documented below.
Trace_Junp_Taken! Branch instruction evaluated true, i.e taken std_logic output
Trace_Junp_Hit 146 Branch Target Cache hit std_logic output
Trace _Delay_Slot! Instruction is in delay slot of a taken branch std_logic output
Trace_Dat a_Access! Valid D-side memory access std_logic output
Trace_Dat a_Address? Address for D-side memory access std_logic_vector (0 to 31) | output
Trace _Data_Wite_ Val uel | Value for D-side memory write access std_logic_vector (0 to 31) | output
Trace_Dat a_Byt e Enabl el Byte enables for D-side memory access std_logic_vector (0 to 3) | output
Trace_Dat a_Read! D-side memory access is a read std_logic output
Trace Data Witel D-side memory access is a write std_logic output
Trace_DCache_Req Data memory address is within D-Cache std_logic output
range
Trace_DCache_Hit Data memory address is present in D-Cache std_logic output
Trace_DCache_Rdy Data memory address is within D-Cache std_logic output
range and the access is completed
Trace_DCache_Read® The D-Cache request is a read std_logic output
Trace_I| Cache_Req Instruction memory address is within std_logic output
I-Cache range
Trace_| Cache_Hit Instruction memory address is present in std_logic output
I-Cache
Trace_I| Cache_Rdy Instruction memory address is within std_logic output
I-Cache range and the access is completed
Trace_OF_Pi peRun Pipeline advance for Decode stage std_logic output
Trace_EX_Pi peRun® Pipeline advance for Execution stage std_logic output
Trace_MEM Pi peRun® Pipeline advance for Memory stage std_logic output
Trace_MB_Hal t ed? Pipeline is halted by debug std_logic output

N e

IS

Valid only when Trace_Valid_Instr = 1

Trace_Exception Kind

Not used with area optimization feature

Valid only when Trace_Exception_Taken =1
Updated for MicroBlaze v7.30: Trace_DCache_Rdy, Trace_DCache_Read, Trace_ICache_Rdy, and Trace_Jump_Hit added
Valid only when Trace_DCache_Req =1

Updated for MicroBlaze v7.00: 4 bits added to Trace_ MSR_Reg, Trace_PID_Reg added, Trace_MB_Halted added, and 1 bit added to

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

129

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-14: Type of Trace Exception

Trace_Exception_Kind [0:4]

Description

00000 Stream exception?

00001 Unaligned exception

00010 Illegal Opcode exception

00011 Instruction Bus exception
00100 Data Bus exception

00101 Divide exception

00110 FPU exception

00111 Privileged instruction exception!
01010 Interrupt

01011 External non maskable break
01100 External maskable break

10000 Data storage exception?

10001 Instruction storage exception!
10010 Data TLB miss exception?
10011 Instruction TLB miss exception®

1. Added for MicroBlaze v7.00

130

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

MicroBlaze Core Configurability

MicroBlaze Core Configurability

Table 3-15:

MPD Parameters

The MicroBlaze core has been developed to support a high degree of user configurability. This
allows tailoring of the processor to meet specific cost/performance requirements.

Configuration is done via parameters that typically enable, size, or select certain processor features.
For example, the instruction cache is enabled by setting the C_USE_| CACHE parameter. The size of
the instruction cache, and the cacheable memory range, are all configurable using:

C_CACHE_BYTE_SI ZE, C_| CACHE_BASEADDR, and C_| CACHE_HI GHADDR respectively.

Parameters valid for MicroBlaze v8.00 are listed in Table 3-15. Not all of these are recognized by
older versions of MicroBlaze; however, the configurability is fully backward compatibility.

Note: Shaded rows indicate that the parameter has a fixed value and cannot be modified.

Parameter Name

Feature/Description

Allowable
Values

Default
Value

EDK
Tool
Assig
ned

VHDL Type

C_ FAM LY

Target Family

aartix7
artix7
artix7I
aspartan3
aspartan3a
aspartan3adsp
aspartan3e
aspartan6
kintex7
kintex71
gspartan6
gspartan6l
spartan3
spartan3a
spartan3adsp
spartan3an
spartan3e
spartan6
spartanél
grvirtex4
grvirtexb
qvirtex4
qvirtexs
qvirtex6
virtex4
virtexb
virtexé
virtexél
virtex7
virtex7I
zynq
zyngl

virtexs

yes

string

C_DATA SI ZE

32

32

NA

integer

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

131

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-15: MPD Parameters (Continued)
EDK
_ Allowable | Default | Tool
Parameter Name Feature/Description values Value | Assig VHDL Type
ned
C_DYNAM C BUS_SI ZI NG Legacy 1 1 NA integer
C_SCO Xilinx internal 0 0 NA integer
C _AREA OPTI M ZED Select implementation to
optimize area with lower 0,1 0 integer
instruction throughput
C _OPTI M ZATI ON Reserved for future use 0 0 NA integer
C_| NTERCONNECT Select interconnect
1 = PLBV46 1,2 1 integer
2=AXl4
C_ENDI ANNESS Select endianness
0 = Big Endian 0,1 0 yes integer
1 = Little Endian
C FAULT_TOLERANT Implement fault tolerance 0,1 0 integer
C_ECC_USE_CE_EXCEPTI ON Generate exception for .
- 0,1 0 integer
correctible ECC error
C _LOCKSTEP_SLAVE Lockstep Slave 0,1 0 integer
C_AVO D_PRI M Tl VES Disallow FPGA primitives
0 = None
1=SRL 0,123 0 integer
2=LUTRAM
3=Both
C _PVR Processor version register integer
mode selection
0 = None 0,1,2 0
1 = Basic
2 =Full
C_PVR_USER1 Processor version register std_logic_vector
USER1 constant 0x00-Oxf 0x00 (0to7)
C _PVR_USER2 Processor version register | 0x00000000- | 0x0000 std_logic_vector
USER?2 constant OXFFffff 0000 (0to 31)
C RESET_MSR Reset value for MSR 0x00, 0x20, std_logic_vector
. 0x00
register 0x80, 0xa0
C_I NSTANCE Instance Name Any instance | micro yes string
name blaze
132 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

MicroBlaze Core Configurability

Table 3-15: MPD Parameters (Continued)

EDK
Parameter Name Feature/Description Allowable | Default Toql VHDL Type
Values Value | Assig
ned
C D PLB Data side PLB interface 0,1 0 yes integer
C D AX Data side AXI interface 0,1 0 yes integer
CDLM Data side LMB interface 0,1 1 yes integer
CIl_PLB Instruction side PLB yes integer
. 0,1 0
interface
Cl_AX Instruction side AXI yes integer
. 0,1 0
interface
Cl_LMB Instruction side LMB yes integer
. 0,1 1
interface
C_USE_BARREL Include barrel shifter 0,1 0 integer
C USE DIV Include hardware divider 0,1 0 integer
C USE_HW MUL Include hardware integer
multiplier
0 = None 0,1,2 1
1=Mul32
2 = Mul64
C _USE_FPU Include hardware floating integer
point unit
0 = None 0,1,2 0
1 = Basic
2 = Extended
C USE_MSR | NSTR Enable use of instructions: 01 1 integer
MSRSET and MSRCLR '
C USE_PCVP_I NSTR Enable use of instructions: integer
CLZ, PCMPBF, 0,1 1
PCMPEQ, and PCMPNE
C_UNALI GNED_EXCEPTI ONS Enable exception handling 01 0 integer
for unaligned data accesses '
C | LL_OPCODE_EXCEPTI ON Enable exception handling 01 0 integer
for illegal op-code '
C_| PLB_BUS_EXCEPTI ON Enable exception handling integer
. _ — 0,1 0
for IPLB bus error
C _DPLB_BUS_EXCEPTI ON Enable exception handling integer
0,1 0
for DPLB bus error
MicroBlaze Processor Reference Guide www.xilinx.com 133

UG081 (v13.4)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-15: MPD Parameters (Continued)
EDK
. Allowable | Default | Tool
Parameter Name Feature/Description Values Value | Assig VHDL Type
ned
C M AXI _| _BUS EXCEPTI ON Enable exception handling integer
0,1 0
for M_AXI_I bus error
C_M AXI _D BUS_EXCEPTI ON Enable exception handling 01 0 integer
for M_AXI_D bus error '
C_DI V_ZERO EXCEPTI ON Enable exception handling integer
for division by zero or 0,1 0
division overflow
C _FPU_EXCEPTI ON Enable exception handling integer
for hardware floating point 0,1 0
unit exceptions
C_OPCODE_0x0_ I LLEGAL Detect opcode 0x0 as an 01 0 integer
illegal instruction '
C_FSL_EXCEPTI ON Enable exception handling integer
. 0,1 0
for Stream Links
C_ECC_USE_CE_EXCEPTI ON Generate Bus Error integer
Exceptions for correctable 0,1 0
errors
C USE_STACK PROTECTI ON Generate exception for integer
stack overflow or stack 0,1 0
underflow
C_DEBUG_ENABLED MDM Debug interface 0,1 0 integer
C _NUMBER OF PC BRK Number of hardware 0-8 1 integer
breakpoints
C NUMBER OF RD ADDR BRK Number of read address 0-4 0 integer
watchpoints
C_NUMBER _OF_WWR_ADDR BRK Number of write address 0-4 0 integer
watchpoints
C_I NTERRUPT_I S_EDGE Level/Edge Interrupt 0,1 0 yes integer
C EDGE | S PCSI TI VE Negative/Positive Edge integer
0,1 1 yes
Interrupt
C FSL_LI NKS? Number of stream 0-16 0 yes integer
interfaces (FSL or AXI)
C _FSL_DATA Sl ZE FSL data bus size 32 32 NA integer

134

www.xilinx.com

MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

MicroBlaze Core Configurability

Table 3-15: MPD Parameters (Continued)
EDK
_ Allowable | Default | Tool
Parameter Name Feature/Description values Value | Assig VHDL Type
ned
C USE_EXTENDED FSL_| NSTR Enable use of extended 01 0 integer
stream instructions '
C_| CACHE_BASEADDR Instruction cache base 0x00000000- | 0x0000 std_logic_vector
address OXFFFFFFFF | 0000
C_I CACHE_HI GHADDR Instruction cache high 0x00000000 - | Ox3FFF std_logic_vector
address OXFFFFFFFF | FFFF
C _USE_| CACHE Instruction cache 0,1 0 integer
C _ALLOW | CACHE_WR Instruction cache write 01 1 integer
enable '
C_| CACHE_LI NE_LEN Instruction cache line integer
4,8 4
length
C_| CACHE_ALWAYS_ USED Instruction cache interface integer
used for all memory
. 0,1 0
accesses in the cacheable
range
C_| CACHE_I| NTERFACE Instruction cache integer
CacheLink interface
protocol 0,1 0 yes2
0=1IXCL
1=IXCL2
C | CACHE_FORCE_TAG _LUTRAM Instruction cache tag integer
always implemented with 0,1 0
distributed RAM
C_| CACHE_STREAMS Instruction cache streams 0,1 0 integer
C | CACHE VI CTI M5 Instruction cache victims 0,2,4,8 0 integer
C_| CACHE_DATA W DTH Instruction cache data integer
width
0 = 32 bits 0,1,2 0
1 = Full cache line
2 =512 bits
C ADDR TAG BITS Instruction cache address 0-25 17 yes integer
tags

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

135

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-15: MPD Parameters (Continued)

EDK
_— Allowable | Default | Tool
Parameter Name Feature/Description values Value | Assig VHDL Type
ned
C _CACHE_BYTE_SI ZE Instruction cache size 64, 128, 256, integer
512, 1024,
2048, 4096,
8192, 16384, 8192
32768,
655363
C | CACHE_USE_FSL Cache over CacheLink integer
instead of peripheral bus 1 1
for instructions
C_DCACHE_BASEADDR Data cache base address 0x00000000 - | 0x0000 std_logic_vector
OxFFFFFFFF | 0000
C_DCACHE_HI GHADDR Data cache high address 0x00000000- | Ox3FFF std_logic_vector
OXFFFFFFFF | FFFF
C _USE_DCACHE Data cache 0,1 0 integer
C_ALLOW DCACHE VR Data cache write enable 0,1 1 integer
C DCACHE LI NE_LEN Data cache line length 4,8 4 integer
C _DCACHE_ALWAYS_USED Data cache interface used integer
for all accesses in the 0,1 0
cacheable range
C _DCACHE | NTERFACE Data cache CacheLink integer
interface protocol
0,1 0 yes2
0=DXCL
1=DXCL2
C DCACHE_FORCE _TAG LUTRAM Data cache tag always integer
implemented with 0,1 0
distributed RAM
C DCACHE _USE WRI TEBACK Data cache write-back 01 0 integer
storage policy used '
C _DCACHE_VI CTI M5 Data cache victims 0,2,4,8 0 integer
C_DCACHE_DATA W DTH Data cache data width integer
0 = 32 hits) 0’ 1’ 2 0
1 = Full cache line
2 =512 bits
C _DCACHE_ADDR TAG Data cache address tags 0-25 17 yes integer

136

www.xilinx.com

MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

MicroBlaze Core Configurability

Table 3-15: MPD Parameters (Continued)
EDK
- Allowable | Default| Tool
Parameter Name Feature/Description values Value | Assig VHDL Type
ned
C _DCACHE_BYTE_SI ZE Data cache size 64, 128, 256, integer
512, 1024,
2048, 4096,
8192, 16384, 8192
32768,
655363
C DCACHE_USE_FSL Cache over CacheLink integer
instead of peripheral bus 1 1
for data
C DPLB DW DTH Data side PLB data width 32 32 integer
C_DPLB_NATI VE_DW DTH Data side PLB native data integer
. 32 32
width
C _DPLB_BURST_EN Data side PLB burst enable 0 0 integer
C DPLB P2P Data side PLB Point-to- 01 0 integer
point '
C_| PLB_DW DTH Instruction side PLB data integer
; 32 32
width
C | PLB_NATI VE_DW DTH Instruction side PLB integer
- - — . - 32 32
native data width
C_| PLB_BURST_EN Instruction side PLB burst 0 0 integer
enable
C I PLB_P2P Instruction side PLB integer
- - : : 0,1 0
Point-to-point
C _USE_mvur Memory Management: integer
0 = None
1 = User Mode 0,123 0
2 = Protection
3 = Virtual
C_MWJ _DTLB_SI ZE4 Data shadow Translation 1248 4 integer
Look-Aside Buffer size e
C MW | TLB_SI ZE4 Instruction shadow integer
Translation Look-Aside 1,2,4,8 2
Buffer size
MicroBlaze Processor Reference Guide www.xilinx.com 137

UG081 (v13.4)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description & XILINX.

Table 3-15: MPD Parameters (Continued)

EDK
Allowable | Default | Tool
Values Value | Assig
ned

Parameter Name Feature/Description VHDL Type

C MW _TLB_ ACCESS* Access to memory integer
management special
registers:

0 = Minimal 0,1,2,3 3
1 =Read
2 = Write
3=Full

C_MWJ_ZONES?* Number of memory
protection zones

0-16 16 integer

C_MWJ_PRI VI LEGED | NSTR* Privileged instructions integer

0 = Full protection 01 0
1 = Allow stream instrs

C_USE_| NTERRUPT Enable interrupt handling 0,1 0 yes integer

C USE_EXT _BRK Enable external break 01 0 yes integer
handling '

C USE_EXT_NM BRK Enable external non- yes integer
. 0,1 0
maskable break handling

C_USE_BRANCH TARGET_CACHE# | Enable Branch Target
Cache

01 0 integer

C _BRANCH TARGET_CACHE_SI ZE# | Branch Target Cache size:

0 = Default

1 =8 entries
2 = 16 entries
3 =32 entries 0-7 0 integer
4 = 64 entries

5 =512 entries
6 = 1024 entries
7 = 2048 entries

C M AXI _DP_ Data side AXI thread ID integer
THREAD | D_W DTH width

C M AXI _DP_DATA W DTH Data side AXI data width 32 32 integer

C_M _AXI _DP_ADDR_W DTH Data side AXI address integer
width 32 32

C M AXI _DP_ Data side AXI uses threads integer
SUPPORTS_THREADS

138 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

MicroBlaze Core Configurability

Table 3-15: MPD Parameters (Continued)

EDK
. Allowable | Default| Tool
Parameter Name Feature/Description Values Value | Assig VHDL Type
ned
C M AXI _DP_SUPPORTS_ READ Data side AXI support for 1 1 integer
read accesses
C M AXI _DP_SUPPORTS WRI TE Data side AXI support for 1 1 integer
write accesses
C M AXI _DP_SUPPCORTS Data side AXI narrow 0 0 integer
NARROW BURST burst support
C_M AXI _DP_PROTOCOL Data side AXI protocol AXI4, AXIl4 yes string
AXI4ALITE LITE
C M AXI _DP_ Data side AXI exclusive 01 0 integer
EXCLUSI VE_ACCESS access support '
C_| NTERCONNECT _ Data side AXI read 1 1 integer
M_AXI _DP_READ | SSU NG accesses issued
C_| NTERCONNECT _ Data side AXI write 1 1 integer
M AXI _DP_W\RI TE_I SSUI NG accesses issued
CMAXI IP_ Instruction side AXI 1 1 integer
THREAD | D W DTH thread 1D width
C_M AXI _| P_DATA W DTH Instruction side AXI data integer
. 32 32
width
C M AXlI | P_ADDR W DTH Instruction side AXI integer
. 32 32
address width
CMAXl IP_ Instruction side AXI uses 0 0 integer
SUPPORTS_THREADS threads
C M AXI _| P_SUPPORTS READ Instruction side AXI 1 1 integer
support for read accesses
C M AXl _| P_SUPPORTS _WRI TE Instruction side AXI 0 0 integer
support for write accesses
C M AXl _| P_SUPPORTS _ Instruction side AXI 0 0 integer
NARROW BURST narrow burst support
C M AXI _| P_PROTOCOL Instruction side AXI AXIALITE AXl14 string
protocol LITE
C_| NTERCONNECT _ Instruction side AXI read 1 1 integer
M AXI | P_READ | SSU NG accesses issued
MicroBlaze Processor Reference Guide www.xilinx.com 139

UG081 (v13.4)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description

& XILINX.

Table 3-15: MPD Parameters (Continued)

EDK
" Allowable | Default | Tool
Parameter Name Feature/Description Values value | Assig VHDL Type
ned
C M AXI _DC_ Data cache AXI ID width 1 1 integer
THREAD_| D W DTH
C_M AXI _DC DATA W DTH Data cache AXI data width | 32, 64, 128, integer
- = == - 32
256, 512
C M AXI _DC _ADDR W DTH Data cache AXI address integer
. 32 32
width
C_ M AXI _DC_ Data cache AXI uses 0 0 integer
SUPPORTS_THREADS threads
C M AXI _DC SUPPORTS READ Data cacheAXI support for 1 1 integer
read accesses
C_M AXI _DC_SUPPORTS_WRI TE Data cache AXI support 1 1 integer
for write accesses
C M AXI _DC_SUPPORTS _ Data cache AXI narrow 0 0 integer
NARROW BURST burst support
C M AXI _DC _SUPPORTS _ Data cache AXI user signal 1 1 integer
USER_SI GNALS support
C M AXI _DC PROTOCOL Data cache AXI protocol AXI14 AXI14 string
C M AXI _DC_ AWJSER W DTH Data cache AXI user width 5 5 integer
C M AXI _DC_ARUSER W DTH Data cache AXI user width 5 5 integer
C_M AXI _DC WUSER W DTH Data cache AXI user width 1 1 integer
C_ M AXI _DC RUSER W DTH Data cache AXI user width 1 1 integer
C M AXI _DC BUSER W DTH Data cache AXI user width 1 1 integer
C M AXI _DC_ Data cache AXI exclusive 01 0 integer
EXCLUSI VE_ACCESS access support '
C_M _AXI _DC_USER_VALUE Data cache AXI user value 0-31 31 integer
C_| NTERCONNECT _ Data cache AXI read 12 2 integer
M _AXI _DC_READ | SSU NG accesses issued ' g
C_| NTERCONNECT _ Data cache AXI write .
M AXI _DC WRI TE_I SSUI NG accesses issued 12481632 | 32 Integer
CMAX _IC_ Instruction cache AXI ID 1 1 integer

THREAD | D W DTH

width

140

www.xilinx.com

MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

MicroBlaze Core Configurability

Table 3-15: MPD Parameters (Continued)
EDK
. Allowable | Default| Tool
Parameter Name Feature/Description Values Value | Assig VHDL Type
ned
C M AXI _| C_ DATA W DTH Instruction cache AXl data | 32, 64, 128, 32 integer
width 256, 512
C M AXl _| C_ADDR W DTH Instruction cache AXI integer
=== - . 32 32
address width
CMAX _IC_ Instruction cache AXI uses 0 0 integer
SUPPCORTS THREADS threads
C_ M AXl _| C_SUPPORTS_READ Instruction cache AXI 1 1 integer
support for read accesses
C M AXI _| C_ SUPPORTS WRI TE Instruction cache AXI 0 0 integer
support for write accesses
C M AXI _| C_SUPPORTS _ Instruction cache AXI 0 0 integer
NARROW BURST narrow burst support
C M AXl _| C_SUPPORTS _ Instruction cache AXI user 1 1 integer
USER_SI GNALS signal support
C_M AXI _| C_PROTOCOL Instruction cache AXI AX]4 AX|4 string
protocol
C M AXI | C AWJSER W DTH Instruction cache AXI user 5 5 integer
width
C M AXlI | C_ ARUSER W DTH Instruction cache AXI user 5 5 integer
width
C M AXI | C WUSER W DTH Instruction cache AXI user 1 1 integer
width
C M AXI _| C_ RUSER W DTH Instruction cache AXI user 1 1 integer
width
C_M AXI _| C_BUSER W DTH Instruction cache AXI user 1 1 integer
width
C M AXl | C USER VALUE Instruction cache AXI user 0-31 31 integer
value
C_| NTERCONNECT _ Instruction cache AXI read 1248 5 yes integer
M _AXI | C_READ | SSUI NG accesses issued e
C_STREAM | NTERCONNECT Select AXI4-Stream 01 0 integer
interconnect ’
C_Mh_AXI S_PROTOCOL AXI4-Stream protocol GENERIC GENERIC string
MicroBlaze Processor Reference Guide www.xilinx.com 141

UG081 (v13.4)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description & XILINX.

Table 3-15: MPD Parameters (Continued)

EDK
. Allowable | Default | Tool
Parameter Name Feature/Description Values Value | Assig VHDL Type
ned
C_Sn_AXI S_PROTOCOL AXI4-Stream protocol GENERIC GENERIC string
C_Mh_AXI S _DATA W DTH AXI4-Stream master data 32 32 NA integer
width
C Sn_AXI S DATA W DTH AXIl4-Stream slave data NA integer
width 32 32

1. The number of Stream Links (FSL or AXI4) is assigned by the tool itself if you are using the co-processor wizard. If you add the IP manually, you
must update the parameter manually.

2. EDK tool assigned value can be overridden by explicit assignment.
Not all sizes are permitted in all architectures. The cache uses between 0 and 32 RAMB primitives (0 if cache size is less than 2048).
4. Not available when C_AREA OPTI M ZEDis set to 1.

w

142 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.
Chapter 4

MicroBlaze Application Binary Interface

This chapter describes MicroBlaze™ Application Binary Interface (ABI), which is important for
developing software in assembly language for the soft processor. The MicroBlaze GNU compiler
follows the conventions described in this document. Any code written by assembly programmers
should also follow the same conventions to be compatible with the compiler generated code.
Interrupt and Exception handling is also explained briefly.

Data Types
The data types used by MicroBlaze assembly programs are shown in Table 4-1. Data types such as
data8, datal6, and data32 are used in place of the usual byte, half-word, and word.register
Table 4-1: Data Types in MicroBlaze Assembly Programs
IoBlee et pes | CTEPIIANS! ize o)
data8 char 1
datal6 short 2
data32 int 4
data32 long int 4
data32 float 4
data32 enum 4
datal6/data32 pointer? 2/4
a. Pointers to small data areas, which can be accessed by global pointers are datal6.
MicroBlaze Processor Reference Guide www.xilinx.com 143

UG081 (v13.4)

http://www.xilinx.com

Chapter 4: MicroBlaze Application Binary Interface & XILINX.

Register Usage Conventions

The register usage convention for MicroBlaze is given in Table 4-2.
Table 4-2: Register Usage Conventions

Register Type Enforcement Purpose
RO Dedicated HW Value 0
R1 Dedicated SW Stack Pointer
R2 Dedicated SW Read-only small data area anchor
R3-R4 \olatile SW Return Values/Temporaries
R5-R10 \olatile SW Passing parameters/Temporaries
R11-R12 \olatile SW Temporaries
R13 Dedicated SwW Read-write small data area anchor
R14 Dedicated HW Return address for Interrupt
R15 Dedicated SW Return address for Sub-routine
R16 Dedicated HW Return address for Trap (Debugger)
R17 Dedicated HW, if configured | Return address for Exceptions
to support HW
exceptions,
else SW
R18 Dedicated SW Reserved for Assembler/Compiler Temporaries
R19 Non-volatile SW Must be saved across function calls. Callee-save
R20 Dedicated SW Reserved for storing a pointer to the Global Offset
or Table (GOT) in Position Independent Code (PIC).
Non-volatile Non-volatile in non-PIC code. Must be saved across

function calls. Callee-save
R21-R31 Non-volatile SW Must be saved across function calls. Callee-save
RPC Special HW Program counter
RMSR Special HW Machine Status Register
REAR Special HW Exception Address Register
RESR Special HW Exception Status Register
RFSR Special HW Floating Point Status Register
RBTR Special HW Branch Target Register
REDR Special HW Exception Data Register
RPID Special HW Process Identifier Register
RZPR Special HW Zone Protection Register
RTLBLO Special HW Translation Look-Aside Buffer Low Register
RTLBHI Special HW Translation Look-Aside Buffer High Register
RTLBX Special HW Translation Look-Aside Buffer Index Register
RTLBSX Special HW Translation Look-Aside Buffer Search Index
RPVRO- Special HW Processor Version Register 0 through 11
RPVR11

144 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Stack Convention

The architecture for MicroBlaze defines 32 general purpose registers (GPRS). These registers are
classified as volatile, non-volatile, and dedicated.

The volatile registers (also known as caller-save) are used as temporaries and do not retain
values across the function calls. Registers R3 through R12 are volatile, of which R3 and R4 are
used for returning values to the caller function, if any. Registers R5 through R10 are used for
passing parameters between subroutines.

Registers R19 through R31 retain their contents across function calls and are hence termed as
non-volatile registers (a.k.a callee-save). The callee function is expected to save those non-
volatile registers, which are being used. These are typically saved to the stack during the
prologue and then reloaded during the epilogue.

Certain registers are used as dedicated registers and programmers are not expected to use them
for any other purpose.

+ Registers R14 through R17 are used for storing the return address from interrupts, sub-
routines, traps, and exceptions in that order. Subroutines are called using the branch and
link instruction, which saves the current Program Counter (PC) onto register R15.

+ Small data area pointers are used for accessing certain memory locations with 16- bit
immediate value. These areas are discussed in the memory model section of this
document. The read only small data area (SDA) anchor R2 (Read-Only) is used to access
the constants such as literals. The other SDA anchor R13 (Read-Write) is used for
accessing the values in the small data read-write section.

+ Register R1 stores the value of the stack pointer and is updated on entry and exit from
functions.

+ Register R18 is used as a temporary register for assembler operations.

MicroBlaze includes special purpose registers such as: program counter (rpc), machine status
register (rmsr), exception status register (resr), exception address register (rear), floating point
status register (rfsr), branch target register (rbtr), exception data register (redr), memory
management registers (rpid, rzpr, rtiblo, rtlbhi, rtlbx, rtlbsx), and processor version registers
(rpvrO-rpvrll). These registers are not mapped directly to the register file and hence the usage
of these registers is different from the general purpose registers. The value of a special purpose
registers can be transferred to or from a general purpose register by using mt s and nf s
instructions respectively.

Stack Convention

The stack conventions used by MicroBlaze are detailed in Table 4-3.

The shaded area in Table 4-3 denotes a part of the stack frame for a caller function, while the
unshaded area indicates the callee frame function. The ABI conventions of the stack frame define
the protocol for passing parameters, preserving non-volatile register values, and allocating space for
the local variables in a function.

Functions that contain calls to other subroutines are called as non-leaf functions. These non-leaf
functions have to create a new stack frame area for its own use. When the program starts executing,
the stack pointer has the maximum value. As functions are called, the stack pointer is decremented
by the number of words required by every function for its stack frame. The stack pointer of a caller
function always has a higher value as compared to the callee function.

MicroBlaze Processor Reference Guide www.xilinx.com 145

UG081 (v13.4)

http://www.xilinx.com

Chapter 4: MicroBlaze Application Binary Interface & XILINX.

Table 4-3: Stack Convention

High Address

Function Parameters for called sub-routine (Arg n .. Argl)

(Optional: Maximum number of arguments required for any called
procedure from the current procedure).

Old Stack Pointer | Link Register (R15)

Callee Saved Register (R31....R19)

(Optional: Only those registers which are used by the current procedure
are saved)

Local Variables for Current Procedure
(Optional: Present only if Locals defined in the procedure)

Functional Parameters (Arg n .. Arg 1)

(Optional: Maximum number of arguments required for any called
procedure from the current procedure)

New Stack Link Register
Pointer

Low Address

Consider an example where Funcl calls Func2, which in turn calls Func3. The stack representation
at different instances is depicted in Figure 4-1. After the call from Func 1 to Func 2, the value of the
stack pointer (SP) is decremented. This value of SP is again decremented to accommaodate the stack
frame for Func3. On return from Func 3 the value of the stack pointer is increased to its original
value in the function, Func 2.

Details of how the stack is maintained are shown in Figure 4-1.

High Memory
Func 1 Func 1 Func 1 Func 1
—
SP
Func 2 Func 2 Func 2
—> —>
SP SP
Func 3
Y
Low Memory Sp X9584

Figure 4-1:. Stack Frame

146

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Memory Model

Calling Convention

The caller function passes parameters to the callee function using either the registers
(R5 through R10) or on its own stack frame. The callee uses the stack area of the caller to store the
parameters passed to the callee.

Refer to Figure 4-1. The parameters for Func 2 are stored either in the registers R5 through R10 or
on the stack frame allocated for Func 1.

If Func 2 has more than six integer parameters, the first six parameters can be passed in registers R5
through R10, whereas all subsequent parameters must be passed on the stack frame allocated for
Func 1, starting at offset SP + 28.

Memory Model

The memory model for MicroBlaze classifies the data into four different parts: Small Data Area,
Data Area, Common Un-Initialized Area, and Literals or Constants.

Small Data Area

Global initialized variables which are small in size are stored in this area. The threshold for deciding
the size of the variable to be stored in the small data area is set to 8 bytes in the MicroBlaze C
compiler (mb-gcc), but this can be changed by giving a command line option to the compiler.
Details about this option are discussed in the GNU Compiler Tools chapter. 64 kilobytes of memory
is allocated for the small data areas. The small data area is accessed using the read-write small data
area anchor (R13) and a 16-bit offset. Allocating small variables to this area reduces the requirement
of adding IMM instructions to the code for accessing global variables. Any variable in the small
data area can also be accessed using an absolute address.

Data Area

Comparatively large initialized variables are allocated to the data area, which can either be accessed
using the read-write SDA anchor R13 or using the absolute address, depending on the command line
option given to the compiler.

Common Un-Initialized Area

Un-initialized global variables are allocated in the common area and can be accessed either using the
absolute address or using the read-write small data area anchor R13.

Literals or Constants

Constants are placed into the read-only small data area and are accessed using the read-only small
data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual values of the
SDA anchors are decided by the linker, in the final linking stages. For more information on the
various sections of the memory please refer to MicroBlaze Linker Script Sections in the Embedded
System Tools Reference Manual. The compiler generates appropriate sections, depending on the
command line options. Please refer to the GNU Compiler Tools chapter in the Embedded System
Tools Reference Manual for more information about these options.

MicroBlaze Processor Reference Guide www.xilinx.com 147

UG081 (v13.4)

http://www.xilinx.com

Chapter 4: MicroBlaze Application Binary Interface & XILINX.

Interrupt and Exception Handling

MicroBlaze assumes certain address locations for handling interrupts and exceptions as indicated in
Table 4-4. At these locations, code is written to jump to the appropriate handlers.

Table 4-4: Interrupt and Exception Handling

On Hardware jumps to Software Labels
Start / Reset 0x0 _start
User exception 0x8 _exception_handler
Interrupt 0x10 _interrupt_handler
Break (HW/SW) 0x18 -
Hardware exception 0x20 _hw_exception_handler
Reserved by Xilinx for 0x28 - Ox4F i
future use

The code expected at these locations is as shown below. For programs compiled without the - x| -
node- xndst ub compiler option, the cr t 0. o initialization file is passed by the nb- gcc
compiler to the mb-Id linker for linking. This file sets the appropriate addresses of the exception
handlers.

For programs compiled with the - x| - nrode- xrdst ub compiler option, thecrt 1. o
initialization file is linked to the output program. This program has to be run with the xmdstub
already loaded in the memory at address location 0x0. Hence at run-time, the initialization code in
crt 1. o writes the appropriate instructions to location 0x8 through 0x14 depending on the address
of the exception and interrupt handlers.

The following is code for passing control to Exception and Interrupt handlers:

0x00: bri _startl

0x04: nop

0x08: i mm hi gh bits of address (user exception handl er)
0x0c: bri _exception_handl er

0x10: i mm high bits of address (interrupt handl er)
0x14: bri _interrupt_handl er

0x20: i mm hi gh bits of address (HW exception handl er
0x24: bri _hw_exception_handl er

MicroBlaze allows exception and interrupt handler routines to be located at any address location
addressable using 32 bits. The user exception handler code starts with the label
_exception_handl er, the hardware exception handler starts with

_hw_excepti on_handl er, while the interrupt handler code starts with the label
_interrupt_handl er.

In the current MicroBlaze system, there are dummy routines for interrupt and exception handling,
which you can change. In order to override these routines and link your interrupt and exception
handlers, you must define the interrupt handler code with an attribute i nt er r upt _handl er. For
more details about the use and syntax of the interrupt handler attribute, please refer to the GNU
Compiler Tools chapter in the Embedded System Tools Reference Guide.

When software breakpoints are used in the Xilinx Microprocessor Debug (XMD) tool, the Break
(HW/SW) address location is reserved for handling the software breakpoint.

148

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.
Chapter 5

MicroBlaze Instruction Set Architecture

This chapter provides a detailed guide to the Instruction Set Architecture of MicroBlaze™.

Notation
The symbols used throughout this chapter are defined in Table 5-1.
Table 5-1: Symbol Notation
Symbol Meaning
+ Add
- Subtract
X Multiply
/ Divide
A Bitwise logical AND
v Bitwise logical OR
@ Bitwise logical XOR
X Bitwise logical complement of x
“— Assignment
>> Right shift
<< Left shift
rx Register x
X[i] Bit i in register x
x[i:j] Bits i through j in register x
= Equal comparison
* Not equal comparison
> Greater than comparison
>= Greater than or equal comparison
< Less than comparison
<= Less than or equal comparison
Signal choice
MicroBlaze Processor Reference Guide www.xilinx.com 149

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture

& XILINX.

Table 5-1: Symbol Notation (Continued)

Symbol Meaning
sext(x) Sign-extend x
Mem(x) Memory location at address x
FSLx Stream interface x (FSL or AXI)
LSW(x) Least Significant Word of x
isDnz(x) Floating point: true if x is denormalized
isInfinite(x) Floating point: true if X is +c or -0

isPosInfinite(x)

Floating point:

true if X is +oo

isNeglnfinite(x)

Floating point:

true if x -oo

isNaN(x)

Floating point:

true if x is a quiet or signalling NaN

isZero(x)

Floating point:

true if x is+0 or -0

isQuietNaN(x)

Floating point:

true if x is a quiet NaN

isSigNaN(x)

Floating point:

true if x is a signaling NaN

signZero(x)

Floating point:

return +0 forx >0, and -0 if x <0

signinfinite(x)

Floating point:

return +oo for x >0, and -0 if X < 0

150

www.xilinx.com

MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

8 X||_|NX Formats

Formats
MicroBlaze uses two instruction formats: Type A and Type B.
Type A
Type A is used for register-register instructions. It contains the opcode, one destination and two
source registers.
Opcode Destination Reg | Source Reg A | SourceRegB |0 (0|00 |0|0O|O0O|O0|0O|O0O]|O
0 6 11 16 21 31
Type B
Type B is used for register-immediate instructions. It contains the opcode, one destination and one
source registers, and a source 16-bit immediate value.
Opcode Destination Reg | Source Reg A Immediate Value
0 6 11 16 31

Instructions

This section provides descriptions of MicroBlaze instructions. Instructions are listed in alphabetical
order. For each instruction Xilinx provides the mnemonic, encoding, a description, pseudocode of
its semantics, and a list of registers that it modifies.

MicroBlaze Processor Reference Guide www.xilinx.com 151
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

add

Arithmetic Add

add D, rA, rB Add
addc D, rA, 1B Add with Carry
addk D, rA, rB Add and Keep Carry
addkc D, rA, 1B Add with Carry and Keep Carry
0 00KCO rD rA rB 0 0O0OO0OO0OOOOOODO
0 6 1 1 2 3
1 6 1 1
Description
The sum of the contents of registers rA and rB, is placed into register rD.
Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addk. Bit 4 of the
instruction (labeled as C in the figure) is set to one for the mnemonic addc. Both bits are set to one
for the mnemonic addkc.
When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add, addc), then the
carry flag will be affected by the execution of the instruction.
When bit 4 of the instruction is set to one (addc, addkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (add, addk), the content of the carry
flag does not affect the execution of the instruction (providing a normal addition).
Pseudocode
if C=0 then
(rD « (rA) + (rB)
el se
(rD) «(rA) + (rB) + MR (]
if K=0 then
MSR[C] <« CarryCut
Registers Altered
e D
e MSRI[C]
Latency
1 cycle
Note
The C bit in the instruction opcode is not the same as the carry bit in the MSR.
The “add r0, r0, r0” (= 0x00000000) instruction is never used by the compiler and usually indicates
uninitialized memory. If you are using illegal instruction exceptions you can trap these instructions
by setting the MicroBlaze parameter C_OPCODE_0x0_| LLEGAL=1.
152 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

addi Arithmetic Add Immediate

addi D, rA, IMM Add Immediate
addic D, rA, IMM Add Immediate with Carry
addik D, rA, IMM Add Immediate and Keep Carry
addikc D, rA, IMM Add Immediate with Carry and Keep Carry

0 01 KCO rD rA IMM

0 6 1 1 3

1 6 1
Description

The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32 bits, is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic
addic. Both bits are set to one for the mnemonic addikc.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi, addic), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addic, addikc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (addi, addik), the content of the carry
flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode
if C=0 then
(rD « (rA) + sext(I MV
el se

(rD «(rA) + sext(IMVY) + MSR[C
if K=0 then
MBR[C] <« CarryCut
Registers Altered

e D
e MSR|[C]

Latency
1 cycle

Notes

The C bit in the instruction opcode is not the same as the carry bit in the MSR.

By default, Type B Instructions take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

MicroBlaze Processor Reference Guide www.xilinx.com 153
UGO081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture

& XILINX.

and Logical AND
and rD, rA, 1B

1 00 0 0 1 rD rA rB 0O 0 0OO0OOOOOOOQ OO
0 6 1 1 2 3
1 6 1 1

Description
The contents of register rA are ANDed with the contents of register rB; the result is placed into

register rD.

Pseudocode

(rD) « (rA) A (rB)

Registers Altered
e D

Latency

1 cycle

154 www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

andi Logial AND with Immediate
andi rD, rA, IMM
101 001 rD rA IMM
0 6 1 1 3
1 6 1
Description

The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode

(rD) < (rA A sext(I MV

Registers Altered

e D

Latency
1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate

values.

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

155

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture

& XILINX.

andn Logical AND NOT
andn D, rA, rB
100011 rD rA B 0000O0OOOOO OO
Description

The contents of register rA are ANDed with the logical complement of the contents of register rB;

the result is placed into register rD.

Pseudocode
(rD) « (rA) A(rB)
Registers Altered

e D

Latency

1 cycle

156 www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

andni Logical AND NOT with Immediate
andni D, rA, IMM
101011 rD rA IMM
0 6 1 1 3
1 6 1

Description
The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the logical
complement of the extended IMM field; the result is placed into register rD.

Pseudocode

(rD) « (rA A (sext(tvy)

Registers Altered
e D

Latency
1 cycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

MicroBlaze Processor Reference Guide www.xilinx.com 157

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

Branch if Equal

beq rA, rB Branch if Equal
beqd rA, rB Branch if Equal with Delay
10011 1/DO0O0GO0O rA rB 0O 000 O0OOOOOOQ OO
6 1 1 2 3
1 6 1 1
Description

Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the

branch is the target instruction.

Pseudocode

If rA=0 then
PC<« PC+ rB
el se
PC« PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
e PC

Latency
1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

beqi

Branch Immediate if Equal

beqi rA, IMM Branch Immediate if Equal
beqid rA, IMM Branch Immediate if Equal with Delay

1 01111|DO0O0OO0O rA IMM

Description

Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic begid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that

is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the

branch is the target instruction.

Pseudocode

If rA=0 then
PC < PC + sext (I MV
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
e PC

Latency
1 cycle (if branch is not taken, or successful branch prediction occurs)
2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate

values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.xilinx.com 159

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

bge

Branch if Greater or Equal

bge rA, rB Branch if Greater or Equal
bged rA, rB Branch if Greater or Equal with Delay
10011 1/DO01TO01 rA rB 0O 000 O0OOOOOOQ OO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA>=0 then
PC« PC + rB
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
e PC

Latency

e 1 cycle (if branch is not taken)
e 2 cycles (if branch is taken and the D bit is set)
e 3cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

160

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

bg el Branch Immediate if Greater or Equal
bgei rA, IMM Branch Immediate if Greater or Equal
bgeid rA, IMM Branch Immediate if Greater or Equal with Delay
101111 DO0O1O01 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA>=0 then
PC < PC + sext (I MV
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
e PC

Latency

e 1cycle (if branch is not taken, or successful branch prediction occurs)
e 2 cycles (if branch is taken and the D bit is set)
e 3cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.xilinx.com 161
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

bgt

Branch if Greater Than

bgt rA, rB Branch if Greater Than
bgtd rA, rB Branch if Greater Than with Delay
10011 1/DO01TGO0GO rA rB 0O 000 O0OOOOOOQ OO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA>0 then
PC<« PC+ rB
el se
PC« PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
e PC

Latency

e 1 cycle (if branch is not taken)
e 2 cycles (if branch is taken and the D bit is set)
e 3cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

162

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

bgt| Branch Immediate if Greater Than
bgti rA, IMM Branch Immediate if Greater Than
bgtid rA, IMM Branch Immediate if Greater Than with Delay
10111 1/DO0O1O0DPO0 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA>0 then
PC < PC + sext (I MV
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
e PC

Latency

e 1cycle (if branch is not taken, or successful branch prediction occurs)
e 2 cycles (if branch is taken and the D bit is set)
e 3cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.xilinx.com 163
UGO081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

ble

Branch if Less or Equal

ble rA, rB Branch if Less or Equal
bled rA, rB Branch if Less or Equal with Delay
10011 1/DO0O0T1I1 rA rB 0O 000 O0OOOOOOQ OO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA<=0 then
PC« PC + rB
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
e PC

Latency

e 1 cycle (if branch is not taken)
e 2 cycles (if branch is taken and the D bit is set)
e 3cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

164

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

blei Branch Immediate if Less or Equal
blei rA, IMM Branch Immediate if Less or Equal
bleid rA, IMM Branch Immediate if Less or Equal with Delay
101111 DOO0Z11 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of IMM. The target of
the branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA<=0 then
PC < PC + sext (I MV
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
e PC

Latency

e 1cycle (if branch is not taken, or successful branch prediction occurs)
e 2 cycles (if branch is taken and the D bit is set)
e 3cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.xilinx.com 165
UGO081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

blt

Branch if Less Than

blt rA, rB Branch if Less Than
bltd rA, rB Branch if Less Than with Delay
1 0011 1/DOO0T1IDO0 rA rB 00 0OO0OOOOTOOQ OO
6 1 1 2 3
1 6 1 1
Description

Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA<O0 then
PC<« PC+ rB
el se
PC« PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
e PC

Latency

e 1 cycle (if branch is not taken)
e 2 cycles (if branch is taken and the D bit is set)
e 3cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

166

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

blti Branch Immediate if Less Than
blti rA, IMM Branch Immediate if Less Than
bltid rA, IMM Branch Immediate if Less Than with Delay
101 11 1/DO0O0OO0CTZ1IO0 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA<O0 then
PC < PC + sext (I MV
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
e PC

Latency

e 1cycle (if branch is not taken, or successful branch prediction occurs)
e 2 cycles (if branch is taken and the D bit is set)
e 3cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.xilinx.com 167
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

bne Branch if Not Equal
bne rA, rB Branch if Not Equal
bned rA, rB Branch if Not Equal with Delay
1 0011 1/DOO0GO0OI1 rA rB 00 0OO0OOOOTOOQ OO
0 6 1 1 2 3
1 6 1 1
Description
Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.
The mnemonic bned will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.
Pseudocode
If rA# 0 then
PC<« PC+ rB
el se
PC < PC + 4
if D=1 then
allow following instruction to conplete execution
Registers Altered
e PC
Latency
1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
168 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

bnei Branch Immediate if Not Equal
bnei rA, IMM Branch Immediate if Not Equal
bneid rA, IMM Branch Immediate if Not Equal with Delay
10111 1/DOO0O01 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA not equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA# 0 then
PC < PC + sext (I MV
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
e PC

Latency

e 1cycle (if branch is not taken, or successful branch prediction occurs)
e 2 cycles (if branch is taken and the D bit is set)
e 3cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.xilinx.com 169
UGO081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

br Unconditional Branch

br B Branch

bra B Branch Absolute

brd rB Branch with Delay

brad B Branch Absolute with Delay

brid D, rB Branch and Link with Delay

brald D, rB Branch Absolute and Link with Delay
100110 rD DALOO rB 00 0OO0OO0OOOO0OOOGODO
0 6 1 1 2 3

1 6 1 1
Description

Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the branch is
to an absolute value and the target is the value in rB, otherwise, it is a relative branch and the target
will be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction.

If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
if L =1 then
(rD « PC
if A=1 then
PC < (rB)
el se

PC <~ PC + (rB)
if D=1 then
allow following instruction to conpl ete execution

Registers Altered
e D
e PC
Latency

e 2cycles (if the D bit is set)
e 3cycles (if the D bit is not set)

170 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

Note

The instructions brl and bral are not available. A delay slot must not be used by the following: imm,
branch, or break instructions. Interrupts and external hardware breaks are deferred until after the
delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.xilinx.com 171
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

bri

Unconditional Branch Immediate

bri IMM Branch Immediate

brai IMM Branch Absolute Immediate

brid IMM Branch Immediate with Delay

braid IMM Branch Absolute Immediate with Delay

brlid rD, IMM Branch and Link Immediate with Delay

bralid rD, IMM Branch Absolute and Link Immediate with Delay
101 110 rb DALOO IMM
0 6 1 1 3

1 6 1
Description

Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the branch
is to an absolute value and the target is the value in IMM, otherwise, it is a relative branch and the
target will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines whether there is
a branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMUJ>=1) and
“bralidrD,0x8“is used to perform a User Vector Exception, the Machine Status Register bits
User Mode and Virtual Mode are cleared.

Pseudocode

if L=1then
(rD « PC
if A=1 then
PC « sext (I MV
el se
PC « PC + sext(I MV
if D=1 then
allow following instruction to conplete execution
if D=1and A=1and L =1 and | MM = 0x8 then
MBR[UMS] « MSR[UM
MBR[VMB] « MSR[VM
MSRIUM <«0
MSRIVM <« 0

172

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

Registers Altered
e D
e PC

e MSR[UM], MSR[VM]

Latency

e 1 cycle (if successful branch prediction occurs)
o 2 cycles (if the D bit is set)
e 3cycles (if the D bit is not set, or a branch prediction mispredict occurs)

Notes

The instructions brli and brali are not available.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.xilinx.com 173
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture

& XILINX.

brk Break

brk D, rB
100110 D 01100 rB 000O0O0OO0OGOTO 0O
0 6 11 16 21 31
Description

Branch and link to the instruction located at address value in rB. The current value of PC will be
stored in rD. The BIP flag in the MSR will be set, and the reservation bit will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

Pseudocode
if MSBRIUM = 1 then
ESR[EC] « 00111
el se
(rD « PC
PC < (rB)
MSR[BI P] <« 1
Reservation <0
Registers Altered
e D
e PC
e MSR[BIP]

e ESR[EC], in case a privileged instruction exception is generated

Latency

e 3cycles

174

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

brkl Break Immediate
brki rD, IMM
101110 rD 01100 IMM
0 6 11 16 a1
Description

Branch and link to the instruction located at address value in IMM, sign-extended to 32 bits. The
current value of PC will be stored in rD. The BIP flag in the MSR will be set, and the reservation bit
will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_ MW >= 1) this instruction is privileged,
except as a special case when “br ki rD, 0x8”or“brki rD, 0x18” isused to performa
Software Break. This means that, apart from the special case, if the instruction is attempted in User
Mode (MBR[UM = 1) a Privileged Instruction exception occurs.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MWJ>= 1) and “br ki
rD, 0x8”or“brki rD, 0x18” isused to perform a Software Break, the Machine Status Register
bits User Mode and Virtual Mode are cleared.

Pseudocode

if MSRRUM =1 and MM # 0x8 and | MM # 0x18 then
ESR] EC] « 00111
el se
(rD) « PC
PC « sext (I MV
MBR[BI P] <« 1
Reservation <0
if IMM= 0x8 or | MM = 0x18 then
MSR[UMB] <« MSRI UM MSRI UM <« 0
MBR[VMB] <« MSR[VM MBR[VM <« 0

Registers Altered
o D, unless an exception is generated, in which case the register is unchanged
e PC
e MSR[BIP], MSR[UM], MSR[VM]
e ESR[EC], in case a privileged instruction exception is generated
Latency

e 3cycles
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

As a special case, the imm instruction does not override a Software Break “br ki r D, 0x18” when
C_USE_DEBUG is set, to allow Software Break after an imm instruction.

MicroBlaze Processor Reference Guide www.xilinx.com 175
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

bs Barrel Shift
bsrl D, rA, 1B Barrel Shift Right Logical
bsra D, rA, B Barrel Shift Right Arithmetical
bsll D, rA, 1B Barrel Shift Left Logical
010001 rb rA rB S TOOOUOOOOODOo
0 6 1 1 2 3
1 6 1 1
Description

Shifts the contents of register rA by the amount specified in register rB and puts the result in register
rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode

if S=1then
(rD) « (rA) << (rB)[27:31]
el se
if T=1then
if ((rB)[27:31]) # 0 then
(rD)[0:(rB)[27:31]-1] « (rA)[0]
(rD[(rB)[27:31]:31] <« (rA) >> (rB)[27:31]
el se
(rD <« (rA
el se
(rD <« (rA) >> (rB)[27:31]

Registers Altered
e D

Latency
e 1cyclewith C_ AREA OPTI M ZED=0
e 2cycleswith C_ AREA OPTI M ZED=1
Note

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

176 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

Barrel Shift Immediate

bsi

bsrli rD, rA, IMM Barrel Shift Right Logical Immediate
bsrai D, rA, IMM Barrel Shift Right Arithmetical Immediate
bslli D, rA, IMM Barrel Shift Left Logical Immediate
011001 rb rA 0 00O O0OO0O|STOOG OO IMM
0 6 1 1 2 2 3
1 6 1 7 1
Description

Shifts the contents of register rA by the amount specified by IMM and puts the result in register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode

if S=1 then
(rD) « (rA) << 1w
el se
if T=1rthen
if IMM=# 0 then

(rD[O: I MWH1] <« (rA) 0]
(rD)[IMV31] « (rA) >> | MW

el se
(rD « (rA
el se
(rD) <« (rA > 1MW

Registers Altered
e D

Latency

e 1cycle with C_AREA OPTI M ZED=0
e 2cycleswith C_ AREA OPTI M ZED=1

Notes

These are not Type B Instructions. There is no effect from a preceding imm instruction.

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift

instructions (C_USE_BARREL=1).

MicroBlaze Processor Reference Guide
UG081 (v13.4)

www.xilinx.com

177

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

clz Count Leading Zeros
clz D, rA Count leading zeros in rA
1 00100 rD rA 0 00OOO0OO0OO0O111200HO0O00O0
6 1 1 2 3
1 6 1 1
Description

This instruction counts the number of leading zeros in register rA starting from the most significant
bit. The result is a number between 0 and 32, stored in register rD.

The result in rD is 32 when rA is 0, and it is O if rA is OXFFFFFFFF.

Pseudocode
n <0
while (rA[n] =0
n<n-+1
(rD) < n
Registers Altered
e D
Latency
e lcycle
Notes

This instruction is only available when the parameter C_ USE_PCMP_| NSTRis set to 1.

178

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

cm p Integer Compare
cmp D, rA, rB compare rB with rA (signed)
cmpu D, rA, 1B compare rB with rA (unsigned)
0 00101 rb rA rB 0 0 0O0OO0OO0OOOOUI12
0 6 1 1 2 3
1 6 1 1
Description
The contents of register rA is subtracted from the contents of register rB and the result is placed into
register rD.
The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set, rA and
rB is considered unsigned values. If the U bit is clear, rA and rB is considered signed values.
Pseudocode
(rD) <« (rB) + (IA)+1
(rD)(MSB) <« (rA) > (rB)
Registers Altered
e D
Latency
e lcycle
MicroBlaze Processor Reference Guide www.xilinx.com 179

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

fadd Floating Point Arithmetic Add
fadd D, rA, 1B Add
010110 rD rA rB 0O 0O0OO0OOOOOOODO
0 6 11 16 21 31
Description

The floating point sum of registers rA and rB, is placed into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
(rD) <« OxFFCO0000
FSRIDO « 1
ESR[EC] <« 00110
else if isSigNaN(rA) or isSigNaN(rB)or
(isPosinfinite(rA) and isNeglnfinite(rB)) or
(isNeglnfinite(rA) and isPosinfinite(rB))) then
(rD) <« OxFFCO0000
FSRIIQ « 1
ESR[EC] <« 00110
else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) <« OxFFCO0000
else if isDnz((rA)+(rB)) then
(rD) <« signZero((rA) +(rB))
FSRIUF] « 1
ESR[EC] <« 00110
else if isNaN((rA)+(rB)) then
(rD <« signinfinite((rA) +(rB))
FSRIOF] « 1
ESR[EC] <« 00110
el se
(rD) «(rA + (rB)

Registers Altered
o 1D, unless an FP exception is generated, in which case the register is unchanged
e ESR[EC], if an FP exception is generated
e FSR[IO,UF,OFDO]
Latency
e 4cycles with C_ AREA OPTI M ZED=0
e 6 cycles with C_AREA_OPTI M ZED=1
Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

180 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

frsub Reverse Floating Point Arithmetic Subtraction
frsub D, rA, rB Reverse subtract
010110 rD rA rB 0001 0O0O0O0OO0TO0OTO
0 6 11 16 21 31
Description

The floating point value in rA is subtracted from the floating point value in rB and the result is
placed into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
(rD) <« OxFFCO0000
FSRIDO « 1
ESR[EC] <« 00110
else if (isSigNaN(rA) or isSigNaN(rB) or
(isPosinfinite(rA) and isPosinfinite(rB)) or
(isNeglnfinite(rA) and isNeglnfinite(rB))) then
(rD) <« OxFFCO0000
FSRIIQ « 1
ESR[EC] <« 00110
else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) <« OxFFCO0000
else if isDnz((rB)-(rA)) then
(rD) <« signZero((rB)-(rA))
FSRIUF] « 1
ESR[EC] <« 00110
else if isNaN((rB)-(rA)) then
(rD <« signinfinite((rB)-(rA))
FSRIOF] « 1
ESR[EC] <« 00110
el se
(rD) «(rB) - (rA

Registers Altered
o 1D, unless an FP exception is generated, in which case the register is unchanged
e ESR[EC], if an FP exception is generated
e FSR[IO,UF,OFDO]
Latency
e 4cycles with C_ AREA OPTI M ZED=0
e 6 cycles with C_AREA_OPTI M ZED=1
Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide www.xilinx.com 181
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

fmul Floating Point Arithmetic Multiplication
fmul rD, rA, rB Multiply
010110 rD rA rB 0 0O1 00 OOOOO0ODO
0 6 11 16 21 31
Description

The floating point value in rA is multiplied with the floating point value in rB and the result is placed
into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then

(rD) <« OxFFCO0000

FSRIDO « 1

ESR[EC] <« 00110

el se
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and islnfinite(rB)) or
(isZero(rB) and islnfinite(rA)) then

(rD) <« O0xFFCO0000
FSRIIQ <« 1
ESR[EC] <« 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) <« OxFFCO0000

else if isDnz((rB)*(rA)) then
(rD) « signZero((rA)*(rB))
FSRIUF] « 1
ESR[EC] <« 00110

else if isNaN((rB)*(rA)) then
(rD) « signinfinite((rB)*(rA))
FSRIOF] « 1
ESR[EC] <« 00110

el se
(rD) «(rB) * (rA

Registers Altered
o 1D, unless an FP exception is generated, in which case the register is unchanged
e ESR[EC], if an FP exception is generated
e FSR[IO,UF,OFDO]
Latency
e 4cycles with C_ AREA OPTI M ZED=0
e 6 cycles with C_AREA_OPTI M ZED=1
Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

182 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

fdiv Floating Point Arithmetic Division
fdiv D, rA, rB Divide
01 0110 rD rA rB 001 100O0O0O0O0O
0 6 11 16 21 31
Description
The floating point value in rB is divided by the floating point value in rA and the result is placed into
register rD.
Pseudocode

if isDnz(rA) or isDnz(rB) then

(rD) <« OxFFCO0000

FSRIDQ <« 1

ESR[EC] <« 00110

el se
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isZero(rB)) or
(islnfinite(rA) and isIinfinite(rB)) then

(rD) <« OxFFCO0000
FSRI1Q <« 1
ESR[EC] <« 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) <« O0xFFCO0000

else if iszZero(rA) and not islinfinite(rB) then
(rD) « signinfinite((rB)/(rA))
FSR[DZ] « 1
ESR[EC] <« 00110

else if isDnz((rB) / (rA)) then
(rD) « signZero((rB) / (rA))
FSRIUF] « 1
ESR[EC] <« 00110

else if isNaN((rB)/(rA)) then
(rD) <« signinfinite((rB) / (rA))
FSRIOF] « 1
ESR[EC] <« 00110

el se
(rD) «(rB) /I (rA

Registers Altered

e D, unless an FP exception is generated, in which case the register is unchanged
e ESRI[EC], if an FP exception is generated
e FSR[IO,UF,OF,DO,DZ]

Latency
o 28 cycles with C_AREA_OPTI M ZED=0, 30 cycles with C_AREA_OPTI M ZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide www.xilinx.com 183
UGO081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

fC m p Floating Point Number Comparison
fcmp.un rD, rA, rB Unordered floating point comparison
femp. It D, rA, rB Less-than floating point comparison
fcmp.eq D, rA, 1B Equal floating point comparison
fcmp.le D, rA, 1B Less-or-Equal floating point comparison
fcmp.gt rD, rA, rB Greater-than floating point comparison
fcmp.ne D, rA, rB Not-Equal floating point comparison
fcmp.ge D, rA, 1B Greater-or-Equal floating point comparison
010110 rD rA rB 0 1 0 O] OpSel |O 0 0O
6 11 16 21 25 28 31
Description

The floating point value in rB is compared with the floating point value in rA and the comparison
result is placed into register rD. The OpSel field in the instruction code determines the type of
comparison performed.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD « O
FSRIDQ <« 1
ESR[EC] <« 00110
el se

{read out behavior from Table 5-2}

Registers Altered

e D, unless an FP exception is generated, in which case the register is unchanged
e ESR[EC], if an FP exception is generated
e FSR[I0,DO]

Latency

e 1cycle with C_AREA OPTI M ZED=0
e 3cycleswith C_ AREA OPTI M ZED=1

Note

These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater than
0.

Table 5-2, page 185 lists the floating point comparison operations.

184

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

Table 5-2:

Floating Point Comparison Operation

Comparison Type

Operand Relationship

isSigNaN(rA) or

isQuietNaN(rA) or

ESR[EC] < 00110

Description OpSel | (rB) > (rA) | (rB)<(rA) | (rB) =(rA) isSigNaN(rB) isQuietNaN(rB)
Unordered 000 | (rD)«0 (rD) « 0 (rD) « 0 (rD) « 1 (rD) «- 1
FSR[10] « 1
ESR[EC] « 00110
Less-than 001 | (D)« 0 (rD) <1 (rD) <0 (rD) <0 (rD) «- 0
FSR[10] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Equal 010 | (rD)«0 (rD) « 0 (rD) « 1 (rD) <0 (rD) «- 0
FSR[10] « 1
ESR[EC] « 00110
Less-or-equal 011 | (rD)« 0 (rD) « 1 (rD) « 1 (rD) « 0 (rD) « 0
FSR[10] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Greater-than 100 | (rD)« 1 (rD) « 0 (rD) « 0 (rD) « 0 (rD) « 0
FSR[10] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Not-equal 101 | (rD)«1 (rD) « 1 (rD) « 0 (rD) « 1 (rD) «- 1
FSR[I0] « 1
ESR[EC] « 00110
Greater-or-equal 110 | (D)« 1 (rD) <0 (rD) « 1 (rD) <0 (rD) «- 0
FSR[I0] « 1 FSR[IO] « 1

ESR[EC] « 00110

MicroBlaze Processor Reference Guide

UG081 (v13.4)

www.xilinx.com

185

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

flt Floating Point Convert Integer to Float
flt D, rA
010110 rD rA 0 01 01 0O0O0O0O0OO0DO0
0 6 11 16 21 31
Description

Converts the signed integer in register rA to floating point and puts the result in register rD. This is
a 32-bit rounding signed conversion that will produce a 32-bit floating point result.

Pseudocode

(rD) « float ((rA)

Registers Altered
e D

Latency
e 4cycles with C_ AREA_OPTI M ZED=0
e 6 cycleswith C_ AREA OPTI M ZED=1
Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

186 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

fint Floating Point Convert Float to Integer
fint D, rA
010110 rD rA 0 011 00O0O0O0O0O0DO0
0 6 11 16 21 31
Description

Converts the floating point number in register rA to a signed integer and puts the result in register
rD. This is a 32-bit signed conversion that will produce a 32-bit integer result.

Pseudocode

if isDnz(rA) then
(rD <« OxFFCO0000
FSRIDO « 1
ESR[EC] <« 00110
else if isNaN(rA) then
(rD) <« OxFFCO0000
FSRIIQ « 1
ESR[EC] <« 00110
else if islnf(rA) or (rA < -231 or (rA) > 231 . 1 then
(rD) <« OxFFCO0000
FSRIIQ <« 1
ESR[EC] <« 00110
el se

(rD) « int ((rA)

Registers Altered

e D, unless an FP exception is generated, in which case the register is unchanged
ESR[EC], if an FP exception is generated

e FSR[IO,DO]

Latency

e 5cycles with C_ AREA OPTI M ZED=0
e 7cycleswith C_ AREA OPTI M ZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU s set to 2
(Extended).

MicroBlaze Processor Reference Guide www.xilinx.com 187
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

fsq rt Floating Point Arithmetic Square Root
fsqrt D, rA Square Root
010110 rD rA 0 011 1000O0O0O0TO0
0 6 1 16 21 31
Description

Performs a floating point square root on the value in rA and puts the result in register rD.

Pseudocode

if isDnz(rA) then
(rD) <« OxFFCO0000
FSRIDO « 1
ESR[EC] <« 00110
else if isSigNaN(rA) then
(rD) <« OxFFCO0000
FSRIIQ « 1
ESR EC] « 00110
else if isQuietNaN(rA) then
(rD <« OxFFCO0000
elseif (rA) < 0 then
(rD) <« OxFFCO0000
FSRIIQ « 1
ESR EC] « 00110
elseif (rA) = -0 then
(rD « -0
el se
(rD <« sqgrt ((rA)

Registers Altered
e D, unless an FP exception is generated, in which case the register is unchanged
e ESR[EC], if an FP exception is generated
e FSR[I0,DO]
Latency
e 27 cycles with C_AREA_OPTI M ZED=0
e 29 cycles with C_ AREA OPTI M ZED=1
Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

188 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

get

get from stream interface

tneaget rD, FSLx get data from link x
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic

tnecaget rD, FSLx get control from link x
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic

011011

rD 0 0000/ 0OnwctaeOO0O0O0O0CO0 FSLx

6 1 16 28 31

Description

MicroBlaze will read from the link x interface and place the result in register rD. If the available
number of links set by C_FSL_ LI NKS is less than or equal to FSLX, link 0 is used.

The get instruction has 32 variants.

The blocking versions (when ‘n’ bit is ‘0”) will stall MicroBlaze until the data from the interface is
valid. The non-blocking versions will not stall micro blaze and will set carry to ‘0’ if the data was
valid and to ‘1’ if the data was invalid. In case of an invalid access the destination register contents
is undefined.

All data get instructions (when “c’ bit is ‘0”) expect the control bit from the interface to be ‘0’. If this
is not the case, the instruction will set MSR[FSL] to “1°. All control get instructions (when “c’ bit is
“1”) expect the control bit from the interface to be “1’. If this is not the case, the instruction will set
MSR[FSL] to ‘1.

The exception versions (when ‘e’ bit is “1”) will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the link
index. The target register, rD, is not updated when an exception is generated, instead the data is
stored in EDR.

The test versions (when ‘t” bitis “1”) will be handled as the normal case, except that the read signal
to the link is not asserted.

Atomic versions (when ‘@’ bit is “1”) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MWUJ>= 1) and not explicitly allowed by
setting C_MMVU_PRI VI LEGED | NSTRto 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM =1) a Privileged Instruction exception
occurs.

MicroBlaze Processor Reference Guide www.xilinx.com 189

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

Pseudocode

if MSRRUM = 1 then
ESR[EC] <« 00111
el se
X <« FSLx
if x > C_FSL_LINKS then
X <0
(rD) <« FSLx_S DATA | Sx_AXI S_TDATA
if (n=1) then
MBR[Carry] <« (FSEX_S_EXISTS | Sx_AXI'S_TVALID)
if (FSLx_S CONTROL | Sx_AXI S TLAST # c) and
(FSLx_S EXISTS | Sx_AXIS TVALID) then
MBR[FSL] <« 1
if (e =1) then
ESR[EC] <« 00000
ESR[ESS] «—instruction bits [28:31]
EDR < FSLx_S DATA | Sx_AXI S _TDATA

Registers Altered

o D, unless an exception is generated, in which case the register is unchanged

e MSR[FSL]

e MSR[Carry]

e ESR[EC], in case a stream exception or a privileged instruction exception is generated
e ESR[ESS], in case a stream exception is generated

e EDR, in case a stream exception is generated

Latency

e 1cyclewith C_ AREA OPTI M ZED=0
e 2cycles with C_AREA OPTI M ZED=1
The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction

can be completed. Interrupts are served when the parameter C_USE_EXTENDED_FSL_| NSTRis
set to 1, and the instruction is not atomic.

Note

To refer to an FSLx interface in assembly language, use rfsl0, rfsl1, ... rfsl15.

The blocking versions of this instruction should not be placed in a delay slot when the parameter
C USE_EXTENDED FSL_| NSTRis set to 1, since this prevents interrupts from being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.
The ‘e’ bit does not have any effect unless C_FSL_EXCEPTI ONis set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL_ LI NKS is greater
than 0.

The extended instructions (exception, test and atomic versions) are only available when the
MicroBlaze parameter C USE_EXTENDED FSL_| NSTRis setto 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

190

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

GETD

get from stream interface dynamic

tneagetd D, rB get data from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic

tnecagetd D, 1B get control from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit not set

a = atomic
010011 rD 0 00O0OO rB OnctaeOOOO OO
0 6 1 16 21 31
Description
MicroBlaze will read from the interface defined by the four least significant bits in rB and place the
result in register rD. If the available number of links set by C_FSL_ LI NKS is less than or equal to
the four least significant bits in rB, link 0 is used.
The getd instruction has 32 variants.
The blocking versions (when ‘n’ bit is ‘0”) will stall MicroBlaze until the data from the interface is
valid. The non-blocking versions will not stall micro blaze and will set carry to ‘0’ if the data was
valid and to ‘1’ if the data was invalid. In case of an invalid access the destination register contents
is undefined.
All data get instructions (when “c’ bit is ‘0”) expect the control bit from the interface to be ‘0’. If this
is not the case, the instruction will set MSR[FSL] to “1°. All control get instructions (when “c’ bit is
“1”) expect the control bit from the interface to be “1’. If this is not the case, the instruction will set
MSR[FSL] to “1°.
The exception versions (when ‘e’ bit is “1”) will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the link
index. The target register, rD, is not updated when an exception is generated, instead the data is
stored in EDR.
The test versions (when ‘t” bitis “1”) will be handled as the normal case, except that the read signal
to the link is not asserted.
Atomic versions (when ‘@’ bit is “1”) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.
When MicroBlaze is configured to use an MMU (C_USE_MWUJ >= 1) and not explicitly allowed
by setting C_MMJ_PRI VI LEGED | NSTRto 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception
occurs.
MicroBlaze Processor Reference Guide www.xilinx.com 191

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

Pseudocode

if MSRRUM = 1 then
ESR[EC] « 00111
el se
X <« rB[28:31]
if x > C_FSL_LINKS then
X < 0
(rD) <« FSLx_S DATA | Sx_AXI S_TDATA
if (n=1) then
MBR[Carry] <« (FSEx_S_EXISTS Sx_AXtS_TVALID)
if (FSLx_S CONTROL | Sx_AXI S TLAST # c) and
(FSLx_S EXISTS | Sx_AXIS TVALID) then
MBR[FSL] <« 1
if (e =1) then
ESR[EC] <« 00000
ESR[ESS] «r B[28: 31]
EDR < FSLx_S DATA | Sx_AXI S _TDATA

Registers Altered
o D, unless an exception is generated, in which case the register is unchanged
e MSR[FSL]
e MSR[Carry]
e ESR[EC], in case a stream exception or a privileged instruction exception is generated
e ESR[ESS], in case a stream exception is generated
e EDR, in case a stream exception is generated

Latency
e 1cycle with C_AREA OPTI M ZED=0
e 2cycles with C_AREA_OPTI M ZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Note

The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.
The ‘e’ bit does not have any effect unless C_FSL_EXCEPTI ONis set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL_ LI NKS is greater
than 0 and the parameter C USE_EXTENDED FSL_| NSTRiis set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

192 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

idiv Integer Divide
idiv rD, rA, rB divide rB by rA (signed)
idivu D, rA, 1B divide rB by rA (unsigned)
01 0010 rD rA rB 0 0O0OO0OO0OO0OOOOUDO
0 6 1 1 2 3
1 6 1 1
Description

The contents of register rB is divided by the contents of register rA and the result is placed into
register rD.

If the U bit is set, rA and rB are considered unsigned values. If the U bit is clear, rA and rB are
considered signed values.

If the value of rA is 0, the DZO bit in MSR will be set and the value in rD will be 0, unless an
exception is generated.

If the U bit is clear, the value of rA is -1, and the value of rB is -2147483648, the DZO bit in MSR
will be set and the value in rD will be -2147483648, unless an exception is generated.

Pseudocode
if (rA) =0 then
(rD) <- 0

MSR[Dz} <- 1
ESREC] <- 00101
ESRIDEC] <- O
elseif U=0 and (rA = -1 and (rB) = -2147483648 then
(rD) <- -2147483648
MSR[Dz} <- 1
ESREC] <- 00101
ESRIDEC] <- 1
el se
(rD «(rB) /I (rA

Registers Altered

o D, unless a divide exception is generated, in which case the register is unchanged
e MSR[DZzQ], if the value in rA is zero
e ESR[EC], if the value in rA is zero

Latency

e 1cycleif (rA) =0, otherwise 32 cycles with C_AREA OPTI M ZED=0
e 1cycleif (rA) =0, otherwise 34 cycles with C_AREA OPTI M ZED=1

Note
This instruction is only valid if MicroBlaze is configured to use a hardware divider (C_USE_DI V =
1).
MicroBlaze Processor Reference Guide www.xilinx.com

193
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

mm

Immediate
imm IMM
1011 0 0(0 O O0OOO0O0O0O0O0DDO IMM
0 6 1 1 3
1 6 1
Description

The instruction imm loads the IMM value into a temporary register. It also locks this value so it can
be used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B instructions have
only a 16-bit immediate value field, a 32-bit immediate value cannot be used directly. However, 32-
bit immediate values can be used in MicroBlaze. By default, Type B Instructions will take the 16-bit
IMM field value and sign extend it to 32 bits to use as the immediate operand. This behavior can be
overridden by preceding the Type B instruction with an imm instruction. The imm instruction locks
the 16-bit IMM value temporarily for the next instruction. A Type B instruction that immediately
follows the imm instruction will then form a 32-bit immediate value from the 16-bit IMM value of
the imm instruction (upper 16 bits) and its own 16-bit immediate value field (lower 16 bits). If no
Type B instruction follows the imm instruction, the locked value gets unlocked and becomes
useless.

Latency

e lcycle

Notes

The imm instruction and the Type B instruction following it are atomic; consequently, no interrupts
are allowed between them.

The assembler provided by Xilinx automatically detects the need for imm instructions. When a 32-
bit IMM value is specified in a Type B instruction, the assembler converts the IMM value to a 16-
bit one to assemble the instruction and inserts an imm instruction before it in the executable file.

194

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

|bu Load Byte Unsigned
Ibu D, rA, B
Ibur D, rA, 1B
110000 rD rA B OROOOOOOTOOO
0 6 11 16 21 31
Description

Loads a byte (8 bits) from the memory location that results from adding the contents of registers rA
and rB. The data is placed in the least significant byte of register rD and the other three bytes in rD
are cleared.

If the R bit is set, a byte reversed memory location is used, loading data with the opposite endianness
of the endianness defined by C_ENDI ANNESS and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode

Addr < (rA) + (rB)
if TLB_M ss(Addr) and MSRIVM = 1 then

ESR[EC] <~ 10010; ESR[S] < 0

MSR[UMB] <« MSRIUM; MSRIWMS] <« MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRRUM = 1 and MSRIVM = 1 then

ESR[EC] <« 10000;ESR[S|« 0; ESR[D Z] « 1

MBR[UMB] «— MSR[UM ; MSR[VMB] «— MSRIVM; MBRIUM <« 0; MBRIVM « 0
el se

(rD)[24:31] <« Men{Addr)

(rD[0:23] « O

Registers Altered

o 1D, unless an exception is generated, in which case the register is unchanged

e MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
e ESR[EC], ESRI[S], if an exception is generated

e ESR[DIZ], if a data storage exception is generated

Latency

e 1cycle with C_AREA OPTI M ZED=0
e 2cycles with C_ AREA OPTI M ZED=1

MicroBlaze Processor Reference Guide www.xilinx.com 195
UGO081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

lbui Load Byte Unsigned Immediate
Ibui rD, rA, IMM
111000 rD rA IMM
0 6 11 16 31
Description

Loads a byte (8 bits) from the memory location that results from adding the contents of register rA
with the value in IMM, sign-extended to 32 bits. The data is placed in the least significant byte of
register rD and the other three bytes in rD are cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode

Addr <« (rA) + sext(IMVY
if TLB_M ss(Addr) and MSRFVM = 1 then

ESR[EC] <~ 10010; ESR[S] «- 0

MSR[UMB] <« MSRIUM; MSRIWMS] <« MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRRUM = 1 and MSRIVM = 1 then

ESR[EC] <« 10000;ESR[S|« 0; ESRID Z] « 1

MBR[UMB] <~ MSR[UM ; MSR[VMB] «— MSRIVM; MBRIUM <« 0; MBRIVM « 0
el se

(rD)[24:31] <« Men{Addr)

(rD[0:23] « O

Registers Altered
o 1D, unless an exception is generated, in which case the register is unchanged
e MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

e ESR[EC], ESRI[S], if an exception is generated
e ESR[DIZ], if a data storage exception is generated

Latency

e 1cycle with C_ AREA OPTI M ZED=0
e 2cycles with C_ AREA OPTI M ZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

196 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

lhu Load Halfword Unsigned
lhu D, rA, 1B
lhur D, rA, 1B
1100 0 1 rD rA rB O ROOOOOOOODO
0 6 11 16 21 31
Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of registers rA and rB. The data is placed in the least significant halfword of register rD and
the most significant halfword in rD is cleared.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword are
reversed, loading data with the opposite endianness of the endianness defined by C_ENDI ANNESS
and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

Pseudocode
Addr <« (rA) + (rB)
if TLB_M ss(Addr) and MSRIVM = 1 then
ESR[EC] <~ 10010; ESR[S] < 0
MSR[UMB] <« MSRIUM; MSRIWMS] <« MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRRUM = 1 and MSRIVM = 1 then
ESR[EC] <« 10000;ESR[S|« 0; ESR[D Z] « 1
MBR[UMB] «— MSR[UM ; MSR[VMB] «— MSRIVM; MBRIUM <« 0; MBRIVM « 0
else if Addr[31] # O then
ESR[EC] < 00001; ESRIW <« 0; ESRIS] <« 0; ESRIRx] « rD
el se
(rD)[16:31] <« Men{Addr)
(rD[0:15] <« O

Registers Altered
e D, unless an exception is generated, in which case the register is unchanged
¢ MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
e ESR[EC], ESRI[S], if an exception is generated

e ESR[DIZ], if a data storage exception is generated
o ESR[W], ESR[RX], if an unaligned data access exception is generated

Latency
e 1cycle with C_AREA OPTI M ZED=0
e 2cycleswith C_ AREA OPTI M ZED=1

MicroBlaze Processor Reference Guide www.xilinx.com 197
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

lhui

Load Halfword Unsigned Immediate

lhui D, rA, IMM

‘111001

rD rA IMM

Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of register rA and the value in IMM, sign-extended to 32 bits. The data is placed in the least
significant halfword of register rD and the most significant halfword in rD is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the least significant bit
in the address is not zero.

Pseudocode

Addr « (rA) + sext(I MV
if TLB_M ss(Addr) and MSRFVM = 1 then
ESR[EC] <~ 10010; ESR[S] «- O
MBR[UMS] «— MSRIUM; MSRIVMS] « MBRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSBRRUM = 1 and MSRIVM = 1 then
ESR[EC] < 10000;ESR S] <« 0; ESRID Z] « 1
MSR[UMB] <— MSR[UM ; MBR[VMB] <~ MSRIVM; MSRETUM <« 0; MSRIVM <« 0
else if Addr[31] # 0 then
ESR EC] <« 00001; ESRIW <« 0; ESRS] « 0; ESRRX] «< rD
el se
(rD)[16:31] <« Men(Addr)
(rD[0:15] <« O

Registers Altered

e D, unless an exception is generated, in which case the register is unchanged

e MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

e ESR[EC], ESRI[S], if an exception is generated
e ESR[DIZ], if a data storage exception is generated
o ESR[W], ESR[RX], if an unaligned data access exception is generated

Latency

o 1cyclewith C_AREA_OPTI M ZED=0
e 2cycles with C_ AREA_OPTI M ZED=1

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

198

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

lw

Load Word

rD, rA, rB
D, rA, 1B

110010

rD rA rB O ROOOOOOSOTODPO

1 16 21 31

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rA and rB. The data is placed in register rD.

If the R bit is set, the bytes in the loaded word are reversed , loading data with the opposite
endianness of the endianness defined by C_ENDI ANNESS and the E bit (if virtual protected mode
is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode

Addr <« (rA) + (rB)
if TLB_M ss(Addr) and MSRIVM = 1 then
ESR[EC] <~ 10010; ESR[S] < 0
MSR[UMB] <« MSRIUM; MSRIWMS] <« MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRRUM = 1 and MSRIVM = 1 then
ESR[EC] <« 10000;ESR[S|« 0; ESR[D Z] « 1
MBR[UMB] «— MSR[UM ; MSR[VMB] «— MSRIVM; MBRIUM <« 0; MBRIVM « 0
else if Addr[30:31] # 0 then
ESR[EC] < 00001; ESRIW <« 1; ESRIS] <« 0; ESRIRx] « rD
el se
(rD) <« Men{ Addr)

Registers Altered

rD, unless an exception is generated, in which case the register is unchanged

MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

ESR[EC], ESR[S], if an exception is generated
ESR[DIZ], if a data storage exception is generated
ESR[W], ESR[RX], if an unaligned data access exception is generated

Latency

1 cycle with C_AREA_OPTI M ZED=0
2 cycles with C_AREA OPTI M ZED=1

MicroBlaze Processor Reference Guide www.xilinx.com 199

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

lwi

Load Word Immediate
rD, rA, IMM
111010 rD rA IMM
0 11 16 31

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of register rA and the value IMM, sign-extended to 32 bits. The data is placed in register rD. A data
TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the two least
significant bits in the address are not zero.

Pseudocode

Addr <« (rA) + sext(lIMV)
if TLB_Mss(Addr) and MSRFVM = 1 then
ESR[EC] «— 10010; ESR[S] «~ 0
MSR[UMB] <« MSRIUM; MSRIWMS] <« MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRRUM = 1 and MSRIVM = 1 then
ESR[EC] <« 10000;ESR[S] <« 0; ESRIDI Z] « 1
MBR[UMB] «— MSR[UM ; MSR[VMB] «— MSRIVM; MBSRIUM <« 0; MBRIVM « 0
else if Addr[30:31] # 0 then
ESR[EC] <« 00001; ESRIW <« 1; ESR[S] « O0; ESRRRX] « rD
el se
(rD) <« Men(Addr)

Registers Altered

rD, unless an exception is generated, in which case the register is unchanged

MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

ESR[EC], ESR[S], if an exception is generated
ESR[DIZ], if a data storage exception is generated
ESR[W], ESR[RX], if an unaligned data access exception is generated

Latency

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

1 cycle with C_AREA_OPTI M ZED=0
2 cycles with C_AREA OPTI M ZED=1

200

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

lwXx

Load Word Exclusive

lwx rD, rA, rB

110010

rD rA rB 1 00O0O0O0OOOOODO

6 1 16 21 31

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rA and rB. The data is placed in register rD, and the reservation bit is set. If an AX14
interconnect with exclusive access enabled is used, and the interconnect response is not EXOKAY,
the carry flag (MSR[C]) is set; otherwise the carry flag is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception will not occur, even if the two least significant bits in the
address are not zero.

A data bus exception can occur when an AXI4 interconnect with exclusive access enabled is used,
and the interconnect response is not EXOKAY, which means that an exclusive access cannot be
handled.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters
C_M _AXI _DP_EXCLUSI VE_ACCESS and C_M AXI _DC_EXCLUSI VE_ACCESS for the
peripheral and cache interconnect, respectively.

Pseudocode

Addr <« (rA) + (rB)
if TLB_Mss(Addr) and MSRFVM = 1 then
ESR[EC] «— 10010; ESR[S] «~ 0
MBR[UMS] < MSRIUM; MSR[VMS] « MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRRUM = 1 and MSRIVM = 1 then
ESR[EC] <« 10000;ESR[S]<« 0; ESR DI Z] « 1
MBR[UMB] «— MSR[UM ; MSR[VMB] «— MSRIVM; MBRIUM <« 0; MBRIVM « 0
el se if AXI _Exclusive_Used(Addr) && AXlI _Response /= EXOKAY then
ESR[EC] <« 00100; ESR[ECC] «— 0;
MSR[UMB] < MBRIUM ; MSR[VMB] <- MBRIVM; MSRIUM < 0; MSRIVM < O
el se
(rD <« Menm(Addr); Reservation <« 1;
i f AXlI _Exclusive_Used(Addr) && AXl _Response /= EXCOKAY then
MSR[C] « 1
el se
MSR[C] « O

MicroBlaze Processor Reference Guide www.xilinx.com 201

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

Registers Altered

o rDand MSR[C], unless an exception is generated, in which case they are unchanged

e MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

e ESR[EC], ESRI[S], if an exception is generated
e ESR[DIZ], if a data storage exception is generated

Latency

e 1cycle with C_ AREA OPTI M ZED=0
e 2cycles with C_ AREA OPTI M ZED=1

Note

This instruction is used together with SWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) may not be set immediately (dependent on pipeline stall behavior). The
LWX instruction should not be immediately followed by an SRC instruction, to ensure the correct
value of the carry flag is obtained.

202 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

mbar Memory Barrier
mbar IMM Memory Barrier
101110 IMM 000100O0O0OO0ODO0OO0OO0OOO0OO0OO0OOO0OTI1LO0D0O
0 6 1 16 31
Description
This instruction ensures that outstanding memory accesses on memory interfaces are completed
before any subsequent instructions are executed. This is necessary to guarantee that self-modifying
code is handled correctly, and that a DMA transfer can be safely started.
With self-modifying code, it is necessary to first use an MBAR instruction to wait for data accesses,
which can be done by setting IMM to 1, and then use another MBAR instruction to clear the Branch
Target Cache and empty the instruction prefetch buffer, which can be done by setting IMM to 2.
To ensure that data to be read by a DMA unit has been written to memory, it is only necessary to wait
for data accesses, which can be done by setting IMM to 1.
Pseudocode
if (IMM& 1) =0 then
wait for instruction side nenory accesses
if (IMM&2) =0 then
wait for data side nenobry accesses
PC« PC + 4
Registers Altered
e PC
Latency
e 1+ Ncycles, where N is the number of cycles to wait for memory accesses to complete
Notes
This instruction must not be preceded by an imm instruction.
With XCL, there is no way for this instruction to know when data writes are complete. Hence it is
also necessary to read back the last written value in this case, to ensure that the access has
completed.
MicroBlaze Processor Reference Guide www.xilinx.com 203

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

mfs

Move From Special Purpose Register
mfs D, rS
100101 rD 0 00O0O0O|1 O rs
0 6 1 16 18 31
Description

Pseudocode

Copies the contents of the special purpose register rS into register rD. The special purpose registers
TLBLO and TLBHI are used to copy the contents of the Unified TLB entry indexed by TLBX.

switch (rS):

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

def aul t

0x0000 :
0x0001 :
0x0003 :
0x0005 :
0x0007 :
0x000B :
0x000D :
0x0800 :
0x0802 :
0x1000 :
0x1001 :
0x1002 :
0x1003 :
0x1004 :

0x200x

Registers Altered

e D

Latency

e lcycle

Notes

(rD)
(rD)
(rb
(rb
(rb
(rD)
(rD)
(rD)
(rb
(rb
(rb
(rD)
(rD)
(rD)
(rD)

PC
VBR
EAR
ESR
FSR
BTR
EDR
SLR
SHR
PI D
ZPR
TLBX
TLBLO
TLBH
PVR[x] (where x = 0 to 11)

2 O N N Y

(rD) <« Undefi ned

To refer to special purpose registers in assembly language, use rpc for PC, rmsr for MSR, rear for
EAR, resr for ESR, rfsr for FSR, rbtr for BTR, redr for EDR, rsir for SLR, rshr for SHR, rpid for
PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and rpvr0 - rpvrll for

PVRO - PVR11.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MFS instruction to guarantee correct MSR value.

204

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

The value read from FSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect FSR must precede the
MFS instruction to guarantee correct FSR value.

EAR, ESR and BTR are only valid as operands when at least one of the MicroBlaze
C_* EXCEPTI ON parameters are set to 1.

EDR is only valid as operand when the parameter C_FSL_EXCEPTI ONis set to 1 and the
parameter C_FSL_LI NKS is greater than 0.

FSR is only valid as an operand when the C_USE_FPU parameter is greater than 0.

SLR and SHR are only valid as an operand when the C_USE_STACK_PROTECTION parameter is
setto 1.

PID, ZPR, TLBLO and TLBHI are only valid as operands when the parameter C USE_ MVU > 1
(User Mode) and the parameter C MVU_TLB_ACCESS =1 (Read) or 3 (Full).

TLBX is only valid as operand when the parameter C_USE_MMUJ > 1 (User Mode) and the
parameter C_ MMJ_TLB_ACCESS > 0 (Minimal).

PVRO is only valid as an operand when C_PVRis 1 (Basic) or 2 (Full), and PVR1 - PVR11 are only
valid as operands when C_PVRis set to 2 (Full).

MicroBlaze Processor Reference Guide www.xilinx.com 205

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

msrC“' Read MSR and clear bits in MSR
msrclr rD, Imm
1 00 1 0 1 rD 1 00 0 10 Imm15
6 11 16 17 31
Description

Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are cleared in the MSR. Bit positions that are 0 in the IMM
value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMUJ >= 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted in
User Mode (MSR[UM = 1) in this case a Privileged Instruction exception occurs.

Pseudocode

if MSRRUM = 1 and | MM # 0x4 then
ESR[EC] <« 00111

el se

(rD) <« (MBR)

(MBR) <« (MBR) A (VW)

Registers Altered
e D
e MSR

e ESR[EC], in case a privileged instruction exception is generated

Latency

e lcycle

Notes

MSRCLR will affect the Carry bit immediately while the remaining bits will take effect one cycle
after the instruction has been executed. When clearing the IE bit, it is guaranteed that the processor
will not react to any interrupt for the subsequent instructions.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MSRCLR instruction to guarantee correct MSR value.

The immediate values has to be less than 21° when C_USE_MWU >= 1 (User Mode), and less than
214 otherwise. Only bits 17 to 31 of the MSR can be cleared when C_USE_MVU>= 1 (User Mode),
and.bits 18 to 31 otherwise.

This instruction is only available when the parameter C USE_MSR_| NSTRis set to 1.

When clearing MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

206

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

msrset

Read MSR and set bits in MSR

msrset rD, Imm

1 00101 rD 1 000O0O Imm15

6 1 16 17 31

Description

Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are set in the MSR. Bit positions that are 0 in the IMM
value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MWU >= 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted in
User Mode (MSR[UM = 1) in this case a Privileged Instruction exception occurs.

Pseudocode

if MSRRUM = 1 and | MM # 0x4 then
ESR] EC] « 00111

el se

(rD) <« (MBR)

(MSR) « (MSR) v (IMM

Registers Altered

e D
e MSR
e ESR[EC], in case a privileged instruction exception is generated

Latency

e lcycle

Notes

MSRSET will affect the Carry bit immediately while the remaining bits will take effect one cycle
after the instruction has been executed. When setting the EIP or BIP bit, it is guaranteed that the
processor will not react to any interrupt or normal hardware break for the subsequent instructions.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MSRSET instruction to guarantee correct MSR value.

The immediate values has to be less than 21° when C_USE_MWU >= 1 (User Mode), and less than
214 otherwise. Only bits 17 to 31 of the MSR can be set when C_USE_MV >= 1 (User Mode),
and.bits 18 to 31 otherwise.

This instruction is only available when the parameter C USE_MSR_| NSTRis set to 1.

When setting MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

MicroBlaze Processor Reference Guide www.xilinx.com 207

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

mts

Move To Special Purpose Register
mts rS, rA
10010100000 rA 11 rs
0 6 1 16 18 31
Description

Copies the contents of register rD into the special purpose register rS. The special purpose registers
TLBLO and TLBHI are used to copy to the Unified TLB entry indexed by TLBX.

When MicroBlaze is configured to use an MMU (C_USE MW >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM =1) a Privileged Instruction
exception occurs.

Pseudocode

if MSRRUM = 1 then
ESR EC] « 00111
el se
switch (rS)
case 0x0001 : MSR « (rA)
case 0x0007 : FSR <« (rA)
case 0x0800 : SLR <« (rA)
case 0x0802 : SHR <« (rA)
case 0x1000 : PID <« (rA)
case 0x1001 : ZPR <« (rA)
case 0x1002 : TLBX <« (rA)
case 0x1003 : TLBLO « (rA)
case 0x1004 : TLBH <« (rA)
case 0x1005 : TLBSX « (rA)

Registers Altered

e IS
e ESR[EC], in case a privileged instruction exception is generated

Latency

e lcycle

Notes

When writing MSR using MTS, all bits take effect one cycle after the instruction has been executed.
An MTS instruction writing MSR should never be followed back-to-back by an instruction that uses
the MSR content. When clearing the IE bit, it is guaranteed that the processor will not react to any
interrupt for the subsequent instructions. When setting the EIP or BIP bit, it is guaranteed that the
processor will not react to any interrupt or normal hardware break for the subsequent instructions.

To refer to special purpose registers in assembly language, use rmsr for MSR, rfsr for FSR, rslr for
SLR, rshr for SHR, rpid for PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX,
and rtlbsx for TLBSX.

The PC, ESR, EAR, BTR, EDR and PVRO - PVR11 cannot be written by the MTS instruction.
The FSR is only valid as a destination if the MicroBlaze parameter C_USE_FPU is greater than 0.

208

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

The SLR and SHR are only valid as a destination if the MicroBlaze parameter
C_USE_STACK_PROTECTION is set to 1.

PID, ZPR and TLBSX are only valid as destinations when the parameter C_USE_MMUJ > 1 (User
Mode) and the parameter C MMU_TLB_ACCESS > 1 (Read). TLBLO, TLBHI and TLBX are only
valid as destinations when the parameter C_USE_MWU > 1 (User Mode).

When changing MSR[VM] or PID the instruction must always be followed by a synchronizing
branch instruction, for example BRI 4.

MicroBlaze Processor Reference Guide www.xilinx.com 209

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

mul Multiply
mul D, rA, 1B
01 00O00O0 rD rA rB 0O 0 0OO0OOOOOOOQ OO
0 6 1 1 2 3
1 6 1 1
Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit multiplication that will produce a 64-bit result. The least significant word of this value is
placed in rD. The most significant word is discarded.
Pseudocode
(rD) < LSW (rA) x (rB))
Registers Altered
e D
Latency
e 1cycle with C_AREA OPTI M ZED=0
e 3cycles with C_AREA OPTI M ZED=1
Note
This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW MUL is greater than 0.
210 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

mulh Multiply High
mulh D, rA, 1B
01 00O00O0 rD rA rB 00 0OO0OOOOOUO OO0 01
0 6 1 1 2 3
1 6 1 1
Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit signed multiplication that will produce a 64-bit result. The most significant word of this value
is placed in rD. The least significant word is discarded.
Pseudocode
(rD) <« MSW (rA) x (rB)), signed
Registers Altered
e D
Latency
e 1cycle with C_AREA OPTI M ZED=0
e 3cycleswith C_AREA OPTI M ZED=1
Note
This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW MUL is set to 2 (Mul64).
When MULH is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between the
two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the actual
values were not relevant.
MicroBlaze Processor Reference Guide www.xilinx.com 211

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

mulhu Multiply High Unsigned
mulhu D, rA, 1B
01 00O00O0 rD rA rB 00 O0OO0OOOOOOT1I1
0 6 1 1 2 3
1 6 1 1
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit unsigned multiplication that will produce a 64-bit unsigned result. The most significant word
of this value is placed in rD. The least significant word is discarded.

Pseudocode

(rD) « MBW (rA) x (rB)), unsigned

Registers Altered
e D

Latency

e 1cycle with C_AREA OPTI M ZED=0
e 3cycles with C_AREA_ OPTI M ZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW MUL is set to 2 (Mul64).

When MULHU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between
the two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the
actual values were not relevant.

212 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

mulhsu Multiply High Signed Unsigned
mulhsu D, rA, 1B
01 00O00O0 rD rA rB 00 0OO0OOOOOOTZI1IO0
0 6 1 1 2 3
1 6 1 1
Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit
signed by 32-bit unsigned multiplication that will produce a 64-bit signed result. The most
significant word of this value is placed in rD. The least significant word is discarded.
Pseudocode
(rD) « MSW (rA), signed x (rB), unsigned), signed
Registers Altered
e D
Latency
e 1cycle with C_AREA OPTI M ZED=0
e 3cycles with C_AREA OPTI M ZED=1
Note
This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW MUL is set to 2 (Mul64).
When MULHSU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between
the two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the
actual values were not relevant.
MicroBlaze Processor Reference Guide www.xilinx.com 213

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

muli Multiply Immediate
muli rD, rA, IMM
011000 rD rA IMM
0 6 1 1 3
1 6 1
Description

Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and puts the
result in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-bit result. The
least significant word of this value is placed in rD. The most significant word is discarded.

Pseudocode
(rD) « LSW (rA) x sext(IM)

Registers Altered
e D

Latency

e 1cycle with C_AREA OPTI M ZED=0
e 3cycles with C_AREA_ OPTI M ZED=1

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW MUL is greater than 0.

214 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

or Logical OR
or D, rA, 1B
1 00 0O0O rD rA rB 0O 0 0OO0OOOOOOOQ OO
0 6 1 1 2 3
1 6 1 1
Description
The contents of register rA are ORed with the contents of register rB; the result is placed into
register rD.
Pseudocode

(rD) < (rA) v (rB)

Registers Altered
e D

Latency

e lcycle

MicroBlaze Processor Reference Guide www.xilinx.com 215
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

ori Logical OR with Immediate
ofri rD, rA, IMM
1 01 0 0O rD rA IMM
6 1 1 3
1 6 1
Description

The contents of register rA are ORed with the extended IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode

(rD) <« (rA v sext(I MV

Registers Altered
e D

Latency

e lcycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

216

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

pcmp bf Pattern Compare Byte Find
pcmpbf D, rA, rB bytewise comparison returning position of first
match
1 000O00O rD rA rB 1 0000O0OO0OTGODO
0 6 1 1 2 3
1 6 1 1
Description

The contents of register rA is bytewise compared with the contents in register rB.

rD is loaded with the position of the first matching byte pair, starting with MSB as position 1,
and comparing until LSB as position 4

o If none of the byte pairs match, rD is setto 0

Pseudocode
if rB[0:7] =rA0:7] then
(rD « 1
el se
if rB[8:15] = rA[8:15] then
(rD) « 2
el se
if rB[16:23] = rA[16: 23] then
(rD « 3
el se
if rB[24:31] = rA 24:31] then
(rD) « 4
el se
(rb «< 0
Registers Altered
e D
Latency
e 1lcycle
Note

This instruction is only available when the parameter C_ USE_PCMP_| NSTRis set to 1.

MicroBlaze Processor Reference Guide www.xilinx.com 217
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture

& XILINX.

pcmpeq

Pattern Compare Equal

pcmpeq D, rA, rB equality comparison with a positive boolean
result
1 00010 rD rA rB 1 0000O0OO0OTGODO
0 6 1 1 2 3
1 6 1 1
Description

The contents of register rA is compared with the contents in register rB.

e D is loaded with 1 if they match, and O if not

Pseudocode
if (rB) = (rA) then
(rD « 1
el se
(rD <« O
Registers Altered
e D
Latency
e lcycle
Note

This instruction is only available when the parameter C_USE_PCMP_| NSTRiis set to 1.

218

www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

pC m p ne Pattern Compare Not Equal
pcmpne rD, rA, rB equality comparison with a negative boolean
result
1 00011 rD rA rB 1 0000O0OO0OTGODO
0 6 1 1 2 3
1 6 1 1
Description

The contents of register rA is compared with the contents in register rB.

e D is loaded with 0 if they match, and 1 if not

Pseudocode
if (rB) = (rA) then
(rD) «< 0
el se
(rD « 1
Registers Altered
e D
Latency
e lcycle
Note

This instruction is only available when the parameter C_USE_PCMP_| NSTRiis set to 1.

MicroBlaze Processor Reference Guide www.xilinx.com 219
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

put

Put to stream interface

naput rA, FSLx put data to link x
n = non-blocking
a = atomic
tnaput FSLx put data to link x test-only
n = non-blocking
a = atomic
ncaput rA, FSLx put control to link x
n = non-blocking
a = atomic
tncaput FSLx put control to link x test-only
n = non-blocking
a = atomic
01101100000 rA 1 nctaOOOU® O®OT 0O FSLx
0 6 1 16 28 31
Description

MicroBlaze will write the value from register rA to the link x interface. If the available number of
links set by C_FSL_LI NKS is less than or equal to FSLx, link O is used.

The put instruction has 16 variants.

The blocking versions (when ‘n” is ‘0”) will stall MicroBlaze until there is space available in the
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if space was
available and to ‘1’ if no space was available.

All data put instructions (when ‘¢’ is “‘0”) will set the control bit to the interface to ‘0’ and all control
put instructions (when ‘c’ is “1”) will set the control bit to ‘1.

The test versions (when ‘t” bit is “1”) will be handled as the normal case, except that the write signal
to the link is not asserted (thus no source register is required).

Atomic versions (when “a’ bit is *1’) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MWU>= 1) and not explicitly allowed by
setting C_MMU_PRI VI LEGED | NSTRto 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception
occurs.

220

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

Pseudocode

if MSRRUM = 1 then
ESR[EC] <« 00111
el se
X < FSLx
if x > C FSL_LINKS then
X < 0
(FSLx_M DATA | Mx_AXI S_TDATA) <« (rA)
if (n=1) then
MSR[Carry] <«

(FSLx_M FULL | MK_AXI S TVALID A Mk_AXIS TREADY)
(FSLx_M CONTROL | Mk_AXI'S TLAST) « C

Registers Altered

e MSR[Carry]
e ESR[EC], in case a privileged instruction exception is generated

Latency
e 1cycle with C_AREA OPTI M ZED=0
e 2cycleswith C_ AREA OPTI M ZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served when the parameter C_ USE_ EXTENDED FSL_| NSTRis
set to 1, and the instruction is not atomic.

Note

To refer to an FSLx interface in assembly language, use rfsl0, rfsl1, ... rfsl15.

The blocking versions of this instruction should not be placed in a delay slot when the parameter
C USE_EXTENDED FSL_| NSTRis set to 1, since this prevents interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_ LI NKS is greater
than 0.

The extended instructions (atomic versions) are only available when the MicroBlaze parameter
C_USE_EXTENDED_FSL_I NSTRis set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

MicroBlaze Processor Reference Guide www.xilinx.com 221
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

putd

Put to stream interface dynamic

naputd rA, rB put data to link rB[28:31]
n = non-blocking
a = atomic
tnaputd B put data to link rB[28:31] test-only
n = non-blocking
a = atomic
ncaputd rA, rB put control to link rB[28:31]
n = non-blocking
a = atomic
tncaputd B put control to link rB[28:31] test-only
n = non-blocking
a = atomic
01 001100000 rA rB 1 ncta0OOO OO O®OTGO
0 6 11 16 21 31
Description

MicroBlaze will write the value from register rA to the link interface defined by the four least
significant bits in rB. If the available number of links set by C_ FSL_ LI NKS is less than or equal to
the four least significant bits in rB, link 0 is used.

The putd instruction has 16 variants.

The blocking versions (when ‘n” is ‘0”) will stall MicroBlaze until there is space available in the
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if space was
available and to ‘1’ if no space was available.

All data putd instructions (when ‘c’ is ‘0”) will set the control bit to the interface to ‘0" and all
control putd instructions (when ‘¢’ is “1’) will set the control bit to “1°.

The test versions (when ‘t” bit is “1”) will be handled as the normal case, except that the write signal
to the link is not asserted (thus no source register is required).

Atomic versions (when “a’ bit is *1’) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MWU>= 1) and not explicitly allowed by
setting C_MMU_PRI VI LEGED | NSTRto 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception
occurs.

222

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

Pseudocode

if MSRRUM = 1 then
ESR EC] <« 00111
el se
X <« rB[28:31]
if x > C_FSL_LINKS then
X <0
(FSLx_M DATA | Mx_AXI S_TDATA) <« (rA)
if (n=1) then
MSR[Carry] <«
(FSLx_M FULL | Mk_AXI S_TVALI D A Mk_AXIS_TREADY)
(FSLx_M CONTROL | MK_AXIS TLAST) « C

Registers Altered

e MSR[Carry]
e ESR[EC], in case a privileged instruction exception is generated

Latency
e 1cycle with C_AREA OPTI M ZED=0
e 2cycleswith C_ AREA OPTI M ZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Note

The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_ LI NKS is greater
than 0 and the parameter C USE_EXTENDED FSL_| NSTRis set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

MicroBlaze Processor Reference Guide www.xilinx.com 223
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

rsub

Arithmetic Reverse Subtract

rsub D, rA, rB Subtract

rsubc D, rA, 1B Subtract with Carry

rsubk D, rA, rB Subtract and Keep Carry

rsubkc D, rA, rB Subtract with Carry and Keep Carry

0 00 KC1 rD rA rB 0O 0O0O0OOOOOSOTODO

Description

The contents of register rA is subtracted from the contents of register rB and the result is placed into
register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic rsubk.
Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic rsubc. Both bits are
set to one for the mnemonic rsubkc.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub, rsubc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsubc, rsubkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the content of the carry
flag does not affect the execution of the instruction (providing a normal subtraction).

Pseudocode
if C=0 then .
(rD) < (rB) + (rA)+1
el se _
(rD) <« (rB) + (rA) + MBR[(]
if K=0 then
MSR[C] <« CarryCut
Registers Altered

e D
e MSR|[C]

Latency

e lcycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow.

224

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

rsubi Arithmetic Reverse Subtract Immediate

rsubi D, rA, IMM Subtract Immediate
rsubic D, rA, IMM Subtract Immediate with Carry
rsubik D, rA, IMM Subtract Immediate and Keep Carry
rsubikc D, rA, IMM Subtract Immediate with Carry and Keep Carry

0 01 KC 1 rD rA IMM

0 6 1 1 3

1 6 1
Description

The contents of register rA is subtracted from the value of IMM, sign-extended to 32 bits, and the
result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for
the mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the
mnemonic rsubic. Both bits are set to one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubi, rsubic), then
the carry flag will be affected by the execution of the instruction. When bit 4 of the instruction is set
to one (rsubic, rsubikc), the content of the carry flag (MSR[C]) affects the execution of the
instruction. When bit 4 is cleared (rsubi, rsubik), the content of the carry flag does not affect the
execution of the instruction (providing a normal subtraction).

Pseudocode
if C=0 then _
(rD) « sext(IMY) + (rA)+1
el se

(rD) <« sext(IMY) + (ﬁ) + MSR[C]
if K=0 then
MBR[C] <« CarryCut

Registers Altered

e D

e MSR[C]
Latency

e lcycle
Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow. By default, Type B
Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use as the immediate
operand. This behavior can be overridden by preceding the Type B instruction with an imm
instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.xilinx.com 225
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

rtbd Return from Break
rtbd rA, IMM
101101/1 0010 rA MM
0 6 11 16 al
Description

Return from break will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. It will also enable breaks after execution by clearing the BIP flag in the
MSR.

This instruction always has a delay slot. The instruction following the RTBD is always executed
before the branch target. That delay slot instruction has breaks disabled.

When MicroBlaze is configured to use an MMU (C_USE_ MW >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM =1) a Privileged Instruction
exception occurs.

Pseudocode

if MSRRUM = 1 then
ESR[EC] « 00111
el se
PC < (rA) + sext(IMVY
allow following instruction to conplete execution
MBR[BIP] « 0
MBR[UM <« MSR[UVB]
MBR[VM <« MBR] V\VB]

Registers Altered

e PC
e MSR[BIP], MSR[UM], MSR[VM]
o ESRI[EC], in case a privileged instruction exception is generated

Latency

e 2cycles

Note

Convention is to use general purpose register r16 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

226 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

rtid Return from Interrupt
rtid rA, IMM
10110 1/1 0 0 0 1 rA IMM
0 6 11 16 31
Description

Return from interrupt will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always executed
before the branch target. That delay slot instruction has interrupts disabled.

When MicroBlaze is configured to use an MMU (C_USE_ MW >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM = 1) a Privileged
Instruction exception occurs.

Pseudocode

if MSRRUM = 1 then

ESR[EC] « 00111

el se

PC < (rA) + sext(IMVY

allow following instruction to conplete execution
MBRIIE] <« 1

MBR[UM <« MSR[UVB]

MBR[VM <« MBR] V\VB]

Registers Altered

e PC

e MSR[IE], MSR[UM], MSR[VM]

o ESRI[EC], in case a privileged instruction exception is generated
Latency

e 2cycles

Note

Convention is to use general purpose register r14 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.xilinx.com 227
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

rted

Return from Exception

rted rA, IMM
10110110100 rA IMM
0 6 11 16 31
Description

Return from exception will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. The instruction will also enable exceptions after execution.

This instruction always has a delay slot. The instruction following the RTED is always executed
before the branch target.

When MicroBlaze is configured to use an MMU (C_USE_ MW >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM =1) a Privileged Instruction
exception occurs.

Pseudocode

if MSRRUM = 1 then
ESR[EC] « 00111
el se
PC < (rA) + sext(I MV
allow following instruction to conmpl ete execution
MBR[EE] <« 1
MSR[EIP] « 0
MSR[UM <« MSR[UVS]
MSR[VM <« MSR[VMB]
ESR <0

Registers Altered

e PC
e MSR[EE], MSR[EIP], MSR[UM], MSR[VM]
e ESR
Latency
e 2cycles
Note

Convention is to use general purpose register r17 as rA. This instruction requires that one or more of
the MicroBlaze parameters C_ * EXCEPTI ONare setto 1 or that C_ USE_MMU > 0.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

The instruction should normally not be used when MSR[EE] is set, since if the instruction in the
delay slot would cause an exception, the exception handler would be entered with exceptions
enabled.

Note: Code returning from an exception must first check if MSR[DS] is set, and in that case return
to the address in BTR.

228

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

rtsd Return from Subroutine
rtsd rA, IMM
101 1 01|12 0 0 0O rA IMM
0 6 1 1 3
1 6 1
Description

Return from subroutine will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits.

This instruction always has a delay slot. The instruction following the RTSD is always executed
before the branch target.

Pseudocode

PC < (rA + sext(IMV)
allow following instruction to conpl ete execution

Registers Altered
e PC

Latency

e 1 cycle (if successful branch prediction occurs)
e 2 cycles (with Branch Target Cache disabled)
e 3 cycles (if branch prediction mispredict occurs)

Note

Convention is to use general purpose register r15 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.xilinx.com 229
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

sb Store Byte
sb D, rA, 1B
sbr D, rA, 1B
11 01 00 rD rA rB OROOUOOOUOOTG OO
0 6 11 16 21 31
Description

Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of registers rA and rB.

If the R bit is set, a byte reversed memory location is used, storing data with the opposite endianness
of the endianness defined by C_ENDI ANNESS and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Pseudocode

Addr <« (rA) + (rB)
if TLB_M ss(Addr) and MSRIVM = 1 then

ESR[EC] <~ 10010; ESR S] « 1

MSR[UMB] <« MSRIUM; MSRIWMS] <« MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRIVM = 1 then

ESR[EC] <« 10000; ESR[S] <« 1; ESR[DI Z] <« No-access-all oned

MBR[UMB] «— MSR[UM ; MSR[VMB] «— MSRIVM; MBRIUM <« 0; MBRIVM « 0
el se

Mem(Addr) <« (rD)[24: 31]

Registers Altered

¢ MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
e ESR[EC], ESR][S], if an exception is generated
e ESR[DIZ], if a data storage exception is generated

Latency

e 1cycle with C_AREA OPTI M ZED=0
e 2cycleswith C_ AREA OPTI M ZED=1

230 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

S b| Store Byte Immediate
sbi D, rA, IMM
111100 rD A MM
0 6 11 16 ”
Description

Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of register rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Pseudocode

Addr <« (rA) + sext(lIMV)
if TLB_M ss(Addr) and MSRFVM = 1 then

ESR[EC] «— 10010; ESR[S] « 1

MSR[UMB] <« MSRIUM; MSRIWMS] <« MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRIVM = 1 then

ESR[EC] <« 10000; ESR[S] «<— 1; ESR[DI Z] <« No-access-al | oned

MBR[UMB] «— MSR[UM ; MSR[VMB] «— MSRIVM; MBRIUM <« 0; MBRIVM « 0
el se

Mem(Addr) <« (rD)[24: 31]

Registers Altered

e MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
o ESRI[EC], ESR[S], if an exception is generated
e ESR[DIZ], if a data storage exception is generated

Latency

e 1cycle with C_AREA OPTI M ZED=0
e 2cycleswith C_ AREA OPTI M ZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

MicroBlaze Processor Reference Guide www.xilinx.com 231
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

SeXt16 Sign Extend Halfword
sextl6 D, rA
1 00 1 00 rD rA 0 00OO0OOODOOI1I1O0O0O0O0OT1
1 6 1
Description

This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be copied
into bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode

(rD)[0:15] « (rA[16]
(rD)[16:31] <« (rA)[16:31]

Registers Altered
e D

Latency

e lcycle

232 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

sext8 Sign Extend Byte
sext8 D, rA
1 001O0O0 rb rA 0O00O0OOOOOOTI110O0O0OO0D0O0
1 6 1
Description

This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied into bits
0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode

(rD)[0:23] « (rA[24]
(rD)[24:31] <« (rA)[24:31]

Registers Altered
e D

Latency

e lcycle

MicroBlaze Processor Reference Guide www.xilinx.com 233
UGO081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

sh Store Halfword
sh rD, rA, rB
shr rD, rA, rB

110101

rD rA rB O ROOOOOOSOTODPO

1 16 21 31

Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned memory
location that results from adding the contents of registers rA and rB.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword are
reversed, storing data with the opposite endianness of the endianness defined by C_ENDI ANNESS
and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

Pseudocode

Addr <« (rA) + (rB)
if TLB_M ss(Addr) and MSRIVM = 1 then

ESR[EC] <~ 10010; ESR S] « 1

MSR[UMB] <« MSRIUM; MSRIWMS] <« MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRIVM = 1 then

ESR[EC] <« 10000; ESR[S] <« 1; ESR[DI Z] <« No-access-all oned

MBR[UMB] «— MSR[UM ; MSR[VMB] «— MSRIVM; MBRIUM <« 0; MBRIVM « 0
else if Addr[31] # O then

ESR[EC] < 00001; ESRIW <« 0; ESRIS] <« 1; ESRIRx] « rD
el se

Mem(Addr) <« (rD)[16: 31]

Registers Altered

MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

ESR[EC], ESR[S], if an exception is generated
ESR[DIZ], if a data storage exception is generated
ESR[W], ESR[RX], if an unaligned data access exception is generated

Latency

1 cycle with C_AREA_OPTI M ZED=0
2 cycles with C_AREA OPTI M ZED=1

234

www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

S h| Store Halfword Immediate
shi D, rA, IMM
111101 rD A MM
° 6 1 16 31
Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned memory
location that results from adding the contents of register rA and the value IMM, sign-extended to 32
bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if virtual
protected mode is enabled, and access is prevented by no-access-allowed or read-only zone
protection. No-access-allowed can only occur in user mode. An unaligned data access exception
occurs if the least significant bit in the address is not zero.

Pseudocode

Addr <« (rA) + sext(lIMV)
if TLB_Mss(Addr) and MSRFVM = 1 then

ESR[EC] <~ 10010; ESR[S] « 1

MSR[UMB] <« MSRIUM; MSRIWMS] <« MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRIVM = 1 then

ESR[EC] <« 10000; ESR[S] «<— 1; ESR[DI Z] <« No-access-al | oned

MBR[UMB] «— MSR[UM ; MSR[VMB] «— MSRIVM; MBRIUM <« 0; MBRIVM « 0
else if Addr[31] # 0 then

ESR[EC] <« 00001; ESRIW <« 0; ESR[S] « 1; ESRRRX] <« rD
el se

Mem(Addr) <« (rD)[16: 31]

Registers Altered
¢ MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated
e ESR[EC], ESRI[S], if an exception is generated
e ESR[DIZ], if a data storage exception is generated
o ESR[W], ESR[RX], if an unaligned data access exception is generated

Latency

e 1cycle with C_AREA OPTI M ZED=0
e 2cycles with C_ AREA OPTI M ZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

MicroBlaze Processor Reference Guide www.xilinx.com 235
UGO081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

Ssra Shift Right Arithmetic
sra D, rA
1 00100 rD rA 0 0O0OO0OOOOOOOOOOOQODG O?I12
0 6 1 1 3
1 6 1
Description

Shifts arithmetically the contents of register rA, one bit to the right, and places the result in rD. The
most significant bit of rA (that is, the sign bit) placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode
(rD[0] « (rA)[0]

(rD)[1:31] <« (rA)[0:30]
MSR[€] <« (rA)[31]

Registers Altered

e D
e MSRI[C]

Latency

e lcycle

236 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

SIc Shift Right with Carry
src D, rA
1 00100 rD rA 0 00OO0OOOOOOOT11IO0O0O0OD0?1
0 6 1 1 3
1 6 1
Description

Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry flag is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode
(rD[0] « MSR[C

(rD)[1:31] <« (rA)[0: 30]
MSR[C] <« (rA)[31]

Registers Altered

e D
e MSRI[C]

Latency

e lcycle

MicroBlaze Processor Reference Guide www.xilinx.com 237
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

sri Shift Right Logical
srl rD, rA
100100 rD rA 00000O0O0O0O0OT11I0000O0TO0?71
0 6 1 1 3
1 6 1
Description

Shifts logically the contents of register rA, one bit to the right, and places the result in rD. A zero is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode
(rD)[0] «< O

(rD)[1:31] <« (rA)[0: 30]
MSR[C] <« (rA)[31]

Registers Altered

e D
e MSRI[C]

Latency

e lcycle

238 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

SW Store Word
S\ D, rA, rB
SWr rD, rA, 1B
110110 rD rA rB O ROOOOOOUO OO ODO
0 6 11 16 21 31
Description

Stores the contents of register rD, into the word aligned memory location that results from adding
the contents of registers rA and rB.

If the R bit is set, the bytes in the stored word are reversed , storing data with the opposite endianness
of the endianness defined by C_ENDI ANNESS and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode

Addr <« (rA) + (rB)
if TLB_M ss(Addr) and MSRIVM = 1 then

ESR[EC] <~ 10010; ESR S] « 1

MSR[UMB] <« MSRIUM; MSRIWMS] <« MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRIVM = 1 then

ESR[EC] <« 10000; ESR[S] <« 1; ESR[DI Z] <« No-access-all oned

MBR[UMB] «— MSR[UM ; MSR[VMB] «— MSRIVM; MBRIUM <« 0; MBRIVM « 0
else if Addr[30:31] # 0 then

ESR[EC] < 00001; ESRIW <« 1; ESRIS] <« 1; ESRIRx] « rD
el se

Mem(Addr) <« (rD)[0: 31]

Registers Altered

e MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

e ESR[EC], ESRI[S], if an exception is generated

e ESR[DIZ], if a data storage exception is generated

e ESR[W], ESR[RX], if an unaligned data access exception is generated

Latency

e 1cycle with C_AREA OPTI M ZED=0
e 2cycles with C_AREA OPTI M ZED=1

MicroBlaze Processor Reference Guide www.xilinx.com 239
UGO081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

SWi Store Word Immediate
SWi D, rA, IMM
111110 rD A MM
° 6 1 16 31
Description

Stores the contents of register rD, into the word aligned memory location that results from adding
the contents of registers rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode

Addr <« (rA) + sext(lIMV)
if TLB_Mss(Addr) and MSRFVM = 1 then

ESR[EC] <~ 10010; ESR[S] « 1

MSR[UMB] <« MSRIUM; MSRIWMS] <« MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Access_Protected(Addr) and MSRIVM = 1 then

ESR[EC] <« 10000; ESR[S] «<— 1; ESR[DI Z] <« No-access-al | oned

MBR[UMB] «— MSRE UM ; MSR VMB] <~ MSRIVM; MSRIUM <« 0; MSRIVM <« O
else if Addr[30:31] # 0 then

ESR[EC] <« 00001; ESRIW <« 1; ESR[S] « 1; ESRRRX] <« rD
el se

Mem(Addr) <« (rD)[0: 31]

Register Altered
¢ MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated
e ESR[EC], ESRI[S], if an exception is generated
e ESR[DIZ], if a data storage exception is generated
o ESR[W], ESR[RX], if an unaligned data access exception is generated

Latency

e 1cycle with C_AREA OPTI M ZED=0
e 2cycles with C_ AREA OPTI M ZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

240 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

SWX Store Word Exclusive
SWX rD, rA, 1B
11 01 10 rD rA rB 100 0 0O0OO0OO0OO0OTP OO
0 6 11 16 21 "
Description

Conditionally stores the contents of register rD, into the word aligned memory location that results
from adding the contents of registers rA and rB. If an AXI14 interconnect with exclusive access
enabled is used, the store occurs if the interconnect response is EXOKAY, and the reservation bit is
set; otherwise the store occurs when the reservation bit is set. The carry flag (MSR[C]) is set if the
store does not occur, otherwise it is cleared. The reservation bit is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception will not occur even if the two least significant bits in the address
are not zero.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters
C_M AXI _DP_EXCLUSI VE_ACCESSand C_M AXI _DC EXCLUSI VE_ACCESS for the
peripheral and cache interconnect, respectively.

Pseudocode

Addr <« (rA) + (rB)
if Reservation = 0 then
MBR[C] « 1
el se
if TLB_M ss(Addr) and MSRIVM = 1 then
ESR[EC] <~ 10010; ESR[S] « 1
MSR[UMS] «— MSRIUM; MSRIVMS] <« MBRIVM; MSRIUM <« 0; MBRIVM <« 0
else if Access_Protected(Addr) and MSRRVM = 1 then
ESR[EC] <« 10000; ESR S] «— 1; ESR[DI Z] <« No-access-al | owed
MSR[UMB] < MSRIUM ; MSR[VMS] « MSRIVM; MSRIUM <« 0; MSRIVM <« O
el se
Reservation « 0
if AXI _Excl usive_Used(Addr) && AXlI _Response /= EXOKAY t hen

MBR[C] « 1
el se
Mem(Addr) <« (rD)[0: 31]
MBR[C] « O
MicroBlaze Processor Reference Guide www.xilinx.com 241

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

Registers Altered

e MSR[C], unless an exception is generated

e MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

o ESRI[EC], ESR[S], if an exception is generated
e ESR[DIZ], if a data storage exception is generated

Latency
e 1cycle with C_ AREA OPTI M ZED=0
e 2cycles with C_ AREA OPTI M ZED=1

Note

This instruction is used together with LWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) may not be set immediately (dependent on pipeline stall behavior). The
SWX instruction should not be immediately followed by an SRC instruction, to ensure the correct
value of the carry flag is obtained.

242 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

Wd C Write to Data Cache
wdc rA,rB
wdc.flush rA,rB
wdc.clear rA,rB
1001 00/0O0O0O0O0 rA rB 00001 1FOI1TO
1 6 7 1
Description

Write into the data cache tag to invalidate or flush a cache line. The mnemonic wdc.flush is used to
set the F bit, and wdc.clear is used to set the T bit.

When C_DCACHE_USE_WRITEBACK is set to 1, the instruction will flush the cache line and
invalidate it if the F bit is set, otherwise it will only invalidate the cache line and discard any data
that has not been written to memory. If the T bit is set, only a cache line with a matching address is
invalidated. Register rA added with rB is the address of the affected cache line.

When C_DCACHE_USE_WRITEBACK is cleared to 0, the instruction will always invalidate the
cache line. Register rA contains the address of the affected cache line, and the register rB value is
not used.

When MicroBlaze is configured to use an MMU (C_USE_MWU >= 1) the instruction is privileged.
This means that if the instruction is attempted in User Mode (MBR] UM =1) a Privileged Instruction
exception occurs.

Pseudocode

if MSRRUM = 1 then
ESR[EC] « 00111
el se

i f C_DCACHE _USE _WRI TEBACK = 1 then
address <« (Ra) + (Rb)

el se
address <« (Ra)

if C_DCACHE_LINE_LEN = 4 then
cacheline_mask « (1 << |o0g2(C _DCACHE BYTE_SIZE) - 4) - 1
cachel i ne <« (DCache Line)[(address >> 4) A cacheline_nask]
cacheline_addr <« address & Oxfffffffo

if C DCACHE LINE_LEN = 8 then
cacheline_nmask « (1 << | o0g2(C_DCACHE BYTE SIZE) - 5) - 1
cachel i ne < (DCache Line)[(address >> 5) A cachel i ne_mask]
cachel i ne_addr < address & Oxffffffe0

if F=1and cacheline.Dirty then
for i =0 .. C DCACHE LINE_LEN - 1 |oop

if cacheline.Valid[i] then
Mem(cacheline_addr + i * 4) <« cacheline.Data[i]

if T=0 then
cacheline.Tag < O

el se i f cacheline. Address = cacheline_addr then
cacheline.Tag < O

MicroBlaze Processor Reference Guide www.xilinx.com 243
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

Registers Altered

o ESRI[EC], in case a privileged instruction exception is generated

Latency

e 2 cycles for wdc.clear
e 2 cycles for wdc with C_AREA OPTI M ZED=1
e 3cycles for wdc with C_AREA_OPTI M ZED=0

e 2+ N cycles for wdc.flush, where N is the number of clock cycles required to flush the cache
line to memory when necessary

Note

The wdc, wdc.flush and wdc.clear instructions are independent of data cache enable (MSR[DCEY]),
and can be used either with the data cache enabled or disabled.

The wdc.clear instruction is intended to invalidate a specific area in memory, for example a buffer to
be written by a Direct Memory Access device. Using this instruction ensures that other cache lines
are not inadvertently invalidated, erroneously discarding data that has not yet been written to
memory.

The address of the affected cache line is always the physical address, independent of the parameter
C _USE_MWJ and whether the MMU is in virtual mode or real mode.

When using wdc.flush in a loop to flush the entire cache, the loop can be optimized by using Ra as
the cache base address and Rb as the loop counter:

addi k r5,r0, C_ DCACHE BASEADDR

addi k r6,r0, C_ DCACHE_BYTE_SI ZE- C_ DCACHE_LI NE_LEN*4
|l oop: wdc.flush r5,r6

bgtid r6,l oop

addi k r6,r6,-C DCACHE LI NE_LEN4

When using wdc.clear in a loop to invalidate a memory area in the cache, the loop can be optimized
by using Ra as the memory area base address and Rb as the loop counter:

addi k r5,r0, nenory_ar ea_base_address
addi k r6,r0, menory_area_byte_size-C DCACHE_ LI NE_LEN+4
|l oop: wdc.clear r5,r6
bgtid r6, |l oop
addi k r6,r6,-C DCACHE_LI NE_LEN*4
244 www.xilinx.com MicroBlaze Processor Reference Guide

UG081 (v13.4)

http://www.xilinx.com

& XILINX. Instructions

wic Write to Instruction Cache
wic rA,rB
1 001 0 0O 0 O0OO0OO0OTPOO rA rB 0 00OO1101000O0
0 6 1 1 3
1 6 1
Description

Write into the instruction cache tag to invalidate a cache line. The register rB value is not used.
Register rA contains the address of the affected cache line.

When MicroBlaze is configured to use an MMU (C_USE_MWU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM =1) a Privileged Instruction
exception occurs.

Pseudocode

if MSRRUM = 1 then
ESR[EC] <« 00111
el se
if CICACHE LINE_LEN = 4 then
cacheline_nmask <« (1 << |o0g2(C _CACHE BYTE SIZE) - 4) - 1
(I Cache Line)[((Ra) >> 4) A cacheline_nask].Tag < 0
if CICACHE LINE_LEN = 8 then
cacheline_nask « (1 << |og2(C_CACHE BYTE SIZE) - 5) - 1
(I Cache Line)[((Ra) >> 5) A cacheline_nask].Tag < 0

Registers Altered
o ESRI[EC], in case a privileged instruction exception is generated

Latency

e 2cycles

Note

The WIC instruction is independent of instruction cache enable (MSR[ICE]), and can be used either
with the instruction cache enabled or disabled.

The address of the affected cache line is always the physical address, independent of the parameter
C _USE_MWJ and whether the MMU is in virtual mode or real mode.

MicroBlaze Processor Reference Guide www.xilinx.com 245
UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture

& XILINX.

XOr Logical Exclusive OR
xor D, rA, 1B

1 00010 rD rA rB 0O 0 0OO0OOOOOOOQ OO
0 6 1 1 2 3
1 6 1 1

Description
The contents of register rA are XORed with the contents of register rB; the result is placed into

register rD.

Pseudocode

(rD) « (rA) @ (rB)

Registers Altered
e D

Latency

e lcycle

246 www.xilinx.com

MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.

Instructions

XOTri Logical Exclusive OR with Inmediate
XOri D, rA, IMM
101 010 rD rA IMM
0 6 1 1 3
1 6 1

Description
The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of register
rA are XOR’ed with the extended IMM field; the result is placed into register rD.

Pseudocode

(rD) « (rA @ sext (I MV

Registers Altered
e D

Latency
e lcycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

MicroBlaze Processor Reference Guide www.xilinx.com 247

UG081 (v13.4)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture & XILINX.

248 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

& XILINX.
Appendix A

Additional Resources

EDK Documentation

The following documents are available in your EDK installation. You can also access the entire
documentation set online at http://www.xilinx.com/ise/embedded/edk_docs.htm.

Relevant individual documents are liked below.

e EDK Concepts, Tools, and Technigues (UG683)
Note: The accompanying design files are in edk_ctt.zip.

e Embedded System Tools Reference Manual (UG111)
e Platform Specification Format Reference Manual (UG642)

e XPS Help
e SDK Help

e PowerPC 405 Processor Reference Guide (UG011)

Additional Resources

The following lists some of the resources you can access directly using the provided URLs.
e The entire set of GNU manuals:
http://www.gnu.org/manual

e Xilinx Data Sheets:
http://www.xilinx.com/support/documentation/data_sheets.htm

e Xilinx Problem Solvers:
http://www.xilinx.com/support/troubleshoot/psolvers.htm

e Xilinx ISE® Manuals:
http://www.xilinx.com/support/software_manuals.htm

e Additional Xilinx Documentation:
http://www.xilinx.com/support/library.htm

e Xilinx Glossary:
http://www.xilinx.com/support/documentation/sw _manuals/glossary.pdf

e Xilinx Documentation:
http://www.xilinx.com/support/documentation

e Xilinx Support:
http://www.xilinx.com/support

MicroBlaze Processor Reference Guide www.xilinx.com 249
UG081 (v13.4)

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=global_glossary
http://www.gnu.org/manual
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.4&topic=sw+manuals
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.4&topic=edk+docs
https://secure.xilinx.com/webreg/clickthrough.do?cid=150312&license=RefDesLicense
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.4&topic=sw+manuals&sub=est_rm.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.4&topic=sw+manuals&sub=edk_ctt.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.4&topic=sw+manuals&sub=psf_rm.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.4&topic=sw+manuals&sub=platform_studio/platform_studio_start.htm
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.4&topic=sw+manuals&sub=SDK_Doc/index.html
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=problem+solvers
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.4&topic=sw+manuals
http://www.xilinx.com/support/library.htm

& XILINX.

250 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.4)

http://www.xilinx.com

	MicroBlaze Processor Reference Guide
	Revision History
	Table of Contents
	Introduction
	Guide Contents
	Conventions
	Typographical
	Online Document

	MicroBlaze Architecture
	Overview
	Features

	Data Types and Endianness
	Instructions
	Instruction Summary
	Semaphore Synchronization
	Self-modifying Code

	Registers
	General Purpose Registers
	Special Purpose Registers
	Program Counter (PC)
	Machine Status Register (MSR)
	Exception Address Register (EAR)
	Exception Status Register (ESR)
	Branch Target Register (BTR)
	Floating Point Status Register (FSR)
	Exception Data Register (EDR)
	Stack Low Register (SLR)
	Stack High Register (SHR)
	Process Identifier Register (PID)
	Zone Protection Register (ZPR)
	Translation Look-Aside Buffer Low Register (TLBLO)
	Translation Look-Aside Buffer High Register (TLBHI)
	Translation Look-Aside Buffer Index Register (TLBX)
	Translation Look-Aside Buffer Search Index Register (TLBS X)
	Processor Version Register (PVR)

	Pipeline Architecture
	Three Stage Pipeline
	Five Stage Pipeline
	Branches

	Memory Architecture
	Privileged Instructions
	Virtual-Memory Management
	Real Mode
	Virtual Mode
	Translation Look-Aside Buffer
	Access Protection
	UTLB Management
	Recording Page Access and Page Modification

	Reset, Interrupts, Exceptions, and Break
	Reset
	Hardware Exceptions
	Breaks
	Interrupt
	User Vector (Exception)

	Instruction Cache
	Overview
	General Instruction Cache Functionality
	Instruction Cache Operation
	Instruction Cache Software Support

	Data Cache
	Overview
	General Data Cache Functionality
	Data Cache Operation
	Data Cache Software Support

	Floating Point Unit (FPU)
	Overview
	Format
	Rounding
	Operations
	Exceptions
	Software Support

	Stream Link Interfaces
	Hardware Acceleration

	Debug and Trace
	Debug Overview
	Trace Overview

	Fault Tolerance
	Configuration
	Features
	Software Support
	Scrubbing
	Use Cases

	Lockstep Operation
	System Configuration
	Use Cases

	MicroBlaze Signal Interface Description
	Overview
	Features

	MicroBlaze I/O Overview
	AXI4 Interface Description
	Memory Mapped Interfaces
	Stream Interfaces

	Processor Local Bus (PLB) Interface Description
	Local Memory Bus (LMB) Interface Description
	LMB Signal Interface
	LMB Transactions
	Read and Write Data Steering

	Fast Simplex Link (FSL) Interface Description
	Master FSL Signal Interface
	Slave FSL Signal Interface
	FSL Transactions
	Direct FSL Connections

	Xilinx CacheLink (XCL) Interface Description
	CacheLink Signal Interface
	CacheLink Transactions

	Lockstep Interface Description
	Debug Interface Description
	Trace Interface Description
	MicroBlaze Core Configurability

	MicroBlaze Application Binary Interface
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small Data Area
	Data Area
	Common Un-Initialized Area
	Literals or Constants

	Interrupt and Exception Handling

	MicroBlaze Instruction Set Architecture
	Notation
	Formats
	Instructions
	add
	addi
	and
	andi
	andn
	andni
	beq
	beqi
	bge
	bgei
	bgt
	bgti
	ble
	blei
	blt
	blti
	bne
	bnei
	br
	bri
	brk
	brki
	bs
	bsi
	clz
	cmp
	fadd
	frsub
	fmul
	fdiv
	fcmp
	flt
	fint
	fsqrt
	get
	getd
	idiv
	imm
	lbu
	lbui
	lhu
	lhui
	lw
	lwi
	lwx
	mbar
	mfs
	msrclr
	msrset
	mts
	mul
	mulh
	mulhu
	mulhsu
	muli
	or
	ori
	pcmpbf
	pcmpeq
	pcmpne
	put
	putd
	rsub
	rsubi
	rtbd
	rtid
	rted
	rtsd
	sb
	sbi
	sext16
	sext8
	sh
	shi
	sra
	src
	srl
	sw
	swi
	swx
	wdc
	wic
	xor
	xori

	Additional Resources
	EDK Documentation
	Additional Resources

